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Relationship Between Group Associations and Factor Methods to Correlation 

 

BACKGROUND 
This paper addresses assumptions in RI$K regarding the degree of dependence between cost 
elements.  Throughout this paper we will refer back to the following example cost estimating 
structure.  
 

Appendix Table 1: Example cost Estimating Structure for Study 

Cost Element Random 
Variable 

Distribution 
Function 

Total System Cost     
   Total Hardware Cost     
      Hardware Item 1 X f(x) 
      Hardware Item 2 Y g(y) 
      Hardware Item 3 Z h(z) 
Total Support Cost     
   Training T   
   SE/PM S   

 
Rows such as "Total System Cost" and "Total Hardware Cost" will be referred to as "parent 
rows" or "aggregate rows."  By the indenture structure, it can be seen that these rows are 
defined as the sum of other rows.  Rows such as "Hardware Item #," "Training," and 
"SE/PM" will be referred to as lowest level items or leaf nodes.  In context, they may be 
referred to as children of their respective parent. 
 
In cost risk analysis, we normally think of each lowest level cost element as a distinct 
random variable.  We specify a target or baseline cost (X, Y, and Z) for each leaf node and a 
probability distribution (f, g, and h) about each point estimate to characterize the risk. 
Aggregate level cost elements are then summations of these lower level random variables.  
Therefore, these aggregate level items are themselves random variables, since a function of 
one or more random variables is a random variable.  The goal of a risk assessment is to 
estimate the probability distribution of these parent items, given distributions at the lower 
levels.  
 
In general, the problem of determining the distribution of a function of random variables is a 
complex, and often unsolvable, problem.  Typically, we resort to heuristic methods to 
approximate these distributions.  RI$K uses the Latin Hyper Cube sampling in the Monte 
Carlo Simulation method, and provides outputs containing mean, standard deviation, and 
various levels of percentiles.  The Latin Hyper Cube method attempts to build up an approxi-
mation to the desired distribution from empirical sampling.  
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An important aspect of dealing with risk analysis is how to treat the risk between or among 
cost elements that are related to each other (positively, negatively, or both).  For example, 
when the cost of Element X increases, the cost of Element Y should also increase, and 
Element Z should decrease.  This is known as dependency or correlation. Its treatment has 
varied from models that allow for no associations to those that assume all elements are fully 
associated.  An allied issue is how to treat the relative strength of the relationship among 
elements.  For instance, should the relationship between two elements be either completely 
associated or should degrees of association be allowed (as in partial correlation)?  Roughly, 
we say that two random variables are independent if a change in one has no effect on the 
other and vice versa. As has been noted often in the cost risk world, there are many potential 
sources of uncertainty and risk in a cost estimate.  Unanticipated or random events occur 
which can affect schedules, budgets, technology considerations, etc. When such an event 
occurs, one or more cost elements are affected.  The goal of a cost risk assessment is to 
capture the likelihood of each possible event, which cost elements are affected, and the 
magnitude of the impact.  Of course, common sense prevails, since it would be impossible to 
capture all possible events, which can impact cost (e.g., the world coming to an end would 
have a definite impact on all cost elements, but the likelihood of the event is hopefully very 
small).  In cost risk analysis, asserting that two elements are independent implies that the set 
of possible events which impact the cost of one have no impact on the cost of the other.  
Conversely, asserting that two elements are dependent implies that one or more of the same 
(likely) events impact both cost elements.  The assumptions regarding dependence can have a 
significant impact on the resulting distribution for the parent level cost elements.  
Mathematically, dependence can be defined in terms of the following theorems. 
 
Theorem 1:  If X1,...Xn are random variables and Y=X1 +...+ Xn,  
 
then VAR(Y)  =  ∑ VAR(Xi) + 2 ∑ ∑ COV(Xi,Xj), where VAR(X) stands for the  

i<j 
variance of a random variable, X, and COV(X,Y) is the covariance between two random 
variables, X and Y.  
 
Theorem 2:  If X and Y are independent random variables, then COV(X,Y) = 0. 
 
Theorems 1 and 2 show the importance of the assumptions regarding dependence (or 
independence).  In our example above, Total Hardware Cost is the sum of X, Y, and Z.  If 
these variables are all dependent (and so COV(X,Y) ¹ 0, etc.), but we mistakenly ignore this 
fact, then we incorrectly estimate the variance at the aggregate level as VAR(X) + VAR(Y) + 
VAR(Z).  This underestimates the true variance by 2(COV(X,Y) + COV(X,Z) + COV(Y,Z)). 
In this case, the true distribution would be broader than our estimate.  Note, however, that 
asserting that X and T are dependent will only affect the resulting distribution at the Total 
System Cost level.  Total Hardware Cost and Total Support Cost will not be affected.  
Furthermore, dependency assumptions have no effect on the expected value of the 
distribution. 
 
In practice, it is unlikely that a total weapon system cost estimate will consist of either 
completely interdependent or independent cost elements.  However, it should be noted that 
the desired solution (partial interdependence) is bounded by the solutions to these extreme 
cases.  By exploring these two cases, the analyst can determine the relative importance of 
these assumptions.  Complete interdependence would provide an upper bound on the desired 
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solution (or we could say a pessimistic estimate).  In most cases, these extreme solutions will 
be unsatisfactory.  The low estimate (independence) will be too low, and the high estimate 
(dependence) will be too high.  The analyst should typically attempt to determine where the 
true estimate falls.  
 
This mathematical definition of dependence strongly suggests that the notion of dependence 
in cost risk analysis can be treated as a problem in correlation with the "degree" of 
dependence measured as a correlation coefficient.  Although this may be a practical construct 
from which to view the problem, there is extreme difficulty in arriving at appropriate 
correlation coefficients.  While it is true that correlations between cost elements can easily be 
calculated, this correlation between cost elements is not appropriate for cost risk assessment.  
In risk analysis, when we ask if two cost elements "move together," we are actually asking if 
there is some common factor that causes our uncertainties in the estimates of these individual 
elements to move together, not the estimates themselves.  This uncertainty is reflected in the 
residuals or percentage errors of our estimating process, so, in essence, we are asking if these 
residuals or percentage errors are correlated.  Strong correlation between cost elements in a 
database should not be mistaken as evidence that the noise terms of our estimating process, 
possibly derived from this same database, are correlated.  Finding correlation in a cost 
database is the job of building CERs and of the estimating process.  The noises about these 
CERs are assumed to be random if the correct driver variables are used. 
 
The dependencies of uncertainties in a cost risk analysis arise because of the way in which a 
program or project is structured.  If two or more activities are scheduled to occur 
concurrently when they would ordinarily be accomplished in series, then problems in one 
task may affect the other.  Similarly, activities that are all affected by a common technology 
shortfall may exhibit common cost impacts associated with redressing the shortfall.  The 
dependence between the uncertainties of estimates for elements of the WBS is determined by 
the structure of the development process.  This dependence is not intrinsic to the elements 
themselves. 
 
These characteristics that give rise to correlations among uncertainties, schedule 
concurrency, and common technology difficulties, are assumed to be unique for each 
program or project.  In a cost database of comparable programs, these factors may have 
significant cost impact on some programs and little impact on others.  A CER built from this 
database captures the mean effect of all these factors over all programs.  These program 
characteristics that give rise to uncertainty add to the variance of any CERs developed.  Since 
these characteristics are unique to each program, there is no reason to believe that they will 
be systematic across all data points in the database; some factors will have a significant 
impact on some programs and not on others.  To try to discover the interdependence of our 
uncertainties in the estimates of cost elements from a historical database, we would need to 
first isolate or "normalize out" those factors with cause uncertainty from each data point.  
Such normalization would be, at best, tedious, time consuming, and heavily reliant on a 
subjective evaluation of each data point. 
 
Given that correlations (of uncertainties) will be difficult, if not impossible, to develop 
objectively from databases, how does one go about it for the purpose of risk modeling?  
Since the characteristics giving rise to interdependence among uncertainties are unique to 
each program, the analyst must make a determination of which elements are likely to move 
together and by what degree. These are subjective determinations that will be guided by the 
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analyst's investigation of the program structure and potential technology problems. Paul 
Garvey of MITRE suggests2 a subjective set of criteria for assigning correlations (with some 
modification for inverse or negative relationships): 
 

Appendix Table 2: Subjective Set of Criteria for Assigning Correlations 

Description Correlation 
Assignment 

No interdependence between elements 0 
Some interdependence between elements 0.25 
Moderate interdependence between elements 0.5 
Strong interdependence between elements 0.75 
Complete interdependence between elements 1 

 
This subjective approach allows the analyst to make a judgment if the uncertainties about two 
elements should move together, in the same or opposite directions.  If a relationship exists, 
subjective judgment is used to set the strength.  The analyst needs to consider all of the 
programmatic, technical, schedule, and budgetary factors to make these judgments.  Note 
again that, while correlation provides a convenient context for discussing dependencies, we 
are not suggesting that correlation coefficients between cost elements, derived from a cost 
database, should be used.  Analyst judgment is needed.  
 
The remainder of this paper presents a new heuristic approach, called "group association," for 
handling interdependence between cost elements.  This approach has been included in the 
Tecolote Research cost risk model, RI$K.  Section 2.0 provides an algorithmic description of 
the method.  The group association heuristic is discussed in the context of the simulation 
model.  Empirical results are presented in section 3.0.  We attempt to show the impact of 
groupings on the resulting convolved distributions, given a number of different starting 
assumptions.  We also present the resulting interterm correlations between related elements.  
Conclusions are discussed in section 4.0, together with some suggestion for future research. 
 
ALGORITHMIC DESCRIPTION OF GROUPING HEURISTIC 
Loosely, we define a Group as a collection of cost elements that are all pairwise related.  
Both positive (items move in the same direction) and negative (opposite direction) 
relationships are allowed in the same group.  In our above example, elements X and S might 
be positively related to one another and negatively related to Y (say due to various schedule 
and technology requirements).  In this case, X and S might both have relatively high costs 
while Y would have a relatively low cost (all in unison), or X and S might be low while Y is 
high.  Note then that elements are grouped together if there is a defined relationship 
(schedule, technology, programmatic...) between them such that events (problems or lack of 
problems) that affect the cost of one will (most likely) affect the costs of the others.  The 
notion of association strength defines the degree to which this relationship is deterministic.  
For each element of a group, an associated strength is assigned.  As with correlation, strength 
must be between -1.0 and 1.0.  The sign indicates the relative direction of the relationship, 
and the unsigned value measures the magnitude of the impact.  The exact magnitude is 
determined by the convolution method used.  
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SIMULATION MODEL 
As we have discussed, the impact of dependencies and groupings occurs during the 
convolution process.  When building to a parent level distribution from lower level cost 
elements, relationships between the lower level items can have a direct impact on the 
resulting distribution.  A common approach to estimating the convolved distribution is the 
Monte Carlo simulation method.  
 
Ignoring grouping, a Monte Carlo approach would typically make a random draw, 
independent of all other draws, for each lowest level cost element.  In RI$K, these draws 
correspond to confidence levels.  For each leaf node, we select a value between 0% and 
100%.  This draw value is then converted into the cost of achieving the corresponding level 
of confidence.  So if the draw for an element is 95%, then the result would be the cost 
necessary to complete the task with 95% confidence.  In our example, cost values are 
calculated from draws for variables X, Y, Z, S, and T.  The cost values for Total Hardware, 
Total Support, and Total System are then calculated as the appropriate sums (according to 
indenture).  This process is repeated many times to develop an approximation of each 
aggregate element's distribution. 
 
With grouping, the process is somewhat more complicated.  For each Monte Carlo iteration, 
RI$K first sets a target confidence level for each group.  Group targets are also random 
values, independent of each other, between 0% and 100%.  The group target defines the 
starting point for determining the draws for each element of the group.  Each group element's 
strength value defines how "close" the element's draw is to the target draw.  The element's 
draw is randomly selected in the range defined by the target draw ± 100*(1.0 - Strength) 
(with a little bookkeeping for boundary conditions and negative strength values).  So a 
strength of 1.0 would force the element to have the same draw value as the target, while a 
strength of 0.0 would put no limitation on the element's draw.  As before, the element draws 
are then converted into costs that are summed to aggregate levels. 
 
While this approach seems deceptively similar to the notion of correlation, it should not be 
thought of as such.  With the grouping approach, it is important to realize that association 
strength is a measure of the closeness of the random draws or confidence levels.  With the 
above-described procedure, two positively related elements will both have costs at 
approximately the same level of confidence; they move together.  For some Monte Carlo 
iterations, both costs might be at the 5% level, while on others they might be at the 75% or 
95% levels.  From this, we can conclude that the respective costs will be high or low 
together. But this is not necessarily a linear relationship.  The form of the relationship is 
determined not only by the strength value but also by the specified distributions for each 
item.  If one was specified as Uniform and the other Normal and the strength was set to 1.0, 
the relationship would certainly not be linear (but essentially Normal).  Empirical results in 
section 3.0 illustrate these ideas. 
 
Two additional concepts should be discussed.  First, RI$K allows one element of each group 
to be distinguished as the dominant element.  We think of this element as the key cost 
element or driver.  Random events that affect this element cause chain reactions to the other 
elements in the group.  In this situation, the dominant element's draw becomes the target 
draw for the other elements in the group.  The second idea that needs to be discussed is that 
of a factor method. RI$K allows leaf nodes to be identified as simple factors of other rows.  
In our example, we might define S = a*X and T = b*(Total Hardware Cost).  After a cost is 
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calculated for X (based on the confidence draw for X), the cost for S is calculated by 
applying the factor relationship.  The cost for T is calculated using the factor relationship 
applied to the summed cost for Total Hardware.  Since these are direct linear relationships, it 
is important to note that these factor rows, S and T, are correlated with the drivers, X, Y, and 
Z, and to each other (even if the exact correlation coefficient is not specified or known).  This 
correlation will then have an impact on the aggregate level convolutions, Total Support Cost 
and Total System Cost.  Similarly, when the input physical parameters, i.e., weight, power, 
etc. are specified by probability distributions, the configuration risk can be handled 
stochastically. 
 
EMPIRICAL RESULTS 
Three distinct sets of experiments were performed.  The first two sets illustrate the impact of 
group associations on the convolution process. Interterm correlations are also calculated.  
The first set of four cases all use the same RI$K inputs, except for group strength 
assignments.  The second set of four cases are identical to the first set, except that skew 
assumptions have been varied.  Results are presented using 2000 iterations.  
 
EXPERIMENTS 1 THROUGH 4 
 
RI$K Inputs 

Appendix Table 3: Distribution Inputs Experiments 1-4 

Distribution Inputs (Exp. 1 - 4) 
Row WBS I/P 

Cost
Distrib. Skew Spread 

1 Total         
2    Part 1 100 TRIANG RIGHT HIGH 
3    Part 2 100 BETA RIGHT HIGH 
4    Part 3 100 TRIANG RIGHT HIGH 
5    Part 4 100 UNIFORM RIGHT HIGH 

 

Appendix Table 4: Association Strengths by Experiment 

Association Strengths by Experiment 
 (All Items in Same Group) 

Row WBS Exp. 1 Exp. 2 Exp. 3 Exp. 4 
1 Total         
2    Part 1 1 1 1 0.8 
3    Part 2 1 0.9 1 0.8 
4    Part 3 1 0.8 -1 0.8 
5    Part 4 1 0.7 -1 0.8 

 
 
 
 
 
 
 
Copyright © Tecolote Research, Inc. September 2003  Page 6 



White Paper ACEIT – RI$K 

 
Results 

Appendix Table 5: Confidence Level Results for Total 

Confidence Level Results for Total Row (Row 1) 
Case Mean 50% 70% 90% 95% 99% 
w/o Grouping 508.4 507.8 545.2 602.3 626.7 681.8 
Monte Carlo             
   Exp. 1 508.4 494.6 589.3 714.7 761.6 822.2 
   Exp. 2 508 494.7 593.7 696.3 732.8 779.8 
   Exp. 3 508.4 504.1 513.9 527.6 534 555.4 
   Exp. 4 507.2 497.8 590.7 691 715.6 754 

 

Appendix Table 6: Inter-Item Correlations for Experiment 1 

Inter-Item Correlations for Exp. 1 
  Part1 Part2 Part3 Part4 
Part1 1       
Part2 0.999 1     
Part3 0.9991 0.999 1   
Part4 0.985 0.989 0.985 1 

 

Appendix Table 7: Inter-Item Correlations for Experiment 2 

Inter-Item Correlations for Exp. 2 
  Part1 Part2 Part3 Part4 
Part1 1       
Part2 0.968 1     
Part3 0.894 0.877 1   
Part4 0.808 0.798 0.752 1 

 

Appendix Table 8: Inter-Item Correlations for Experiment 3 

Inter-Item Correlations for Exp. 3 
  Part1 Part2 Part3 Part4 
Part1 1       
Part2 0.999 1     
Part3 -0.97 -0.97 1   
Part4 -0.99 -0.99 0.985 1 
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Appendix Table 9: Inter-Item Correlations for Experiment 4 

Inter-Item Correlations for Exp. 4 
  Part1 Part2 Part3 Part4 
Part1 1       
Part2 0.825 1     
Part3 0.818 0.821 1   
Part4 0.835 0.837 0.838 1 

 
Observations 
As expected, the mean estimates for these cases are all approximately the same as the 
estimate without groupings.  With groupings, if all elements move together (Exp. 1, 2, and 
4), then the parent distributions are spread out (greater risk).  The cost of achieving a 99% 
level of confidence varies from 681.8 (without groupings) to 822.2 with complete depen-
dence (Exp. 1).  This gives a potential increase of 20.6%.  When two of the elements in the 
group have a negative strength, as expected, the parent distribution "shrinks" (99% point for 
Exp. 3 is 555.4).  This gives a potential decrease of 18.5%. 
 
Finally, from the correlation tables, we can see that inter-item correlations also track well to 
the user-specified group strength values. 
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EXPERIMENTS 5 THROUGH 8 
 
RI$K Inputs 

Appendix Table 10: Distribution Inputs Experiments 5-8 

Distribution Inputs (Exp. 5 - 8) 
Row WBS I/P Cost Distrib Skew Spread 
1 Total         
2    Part 1 100 TRIANG RIGHT HIGH 
3    Part 2 100 BETA RIGHT HIGH 
4    Part 3 100 TRIANG LEFT HIGH 
5    Part 4 100 UNIFORM LEFT HIGH 

 

Appendix Table 11: Association Strengths by Experiment 

Association Strengths by Experiment 
(All Items in Same Group) 

Row WBS Exp. 5 Exp. 6 Exp. 7 Exp. 8 
1 Total         
2    Part 1 1 1 0.9 0.8 
3    Part 2 1 1 0.9 0.8 
4    Part 3 1 -1 0.9 0.8 
5    Part 4 1 -1 0.9 0.8 

Results 

Appendix Table 12: Confidence Level Results for Total 

Confidence Level Results for Total Row (Row 1) 
Case Mean 50% 70% 90% 95% 99% 
w/o Grouping 393.7 394.8 432.3 488.9 519.7 559.7 
Monte Carlo             
   Exp. 5 391 386.8 477 588.2 629.3 682.2 
   Exp. 6 391 389.6 392.2 393.8 401.2 429 
   Exp. 7 391.1 384.8 478.3 587.4 616 646 
   Exp. 8 391.3 390.5 480.5 565.9 588.2 622.2 
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Appendix Table 13: Inter-Item Correlations for Experiment 5 

Inter-Item Correlations for Exp. 5 
  Part1 Part2 Part3 Part4 

Part1 1       
Part2 0.999 1     
Part3 0.97 0.974 1   
Part4 0.985 0.988 0.99 1 

 

Appendix Table 14: Inter-Item Correlations for Experiment 6 

Inter-Item Correlations for Exp. 6 
  Part1 Part2 Part3 Part4 

Part1 1       
Part2 0.999 1     
Part3 -0.998 -0.997 1   
Part4 -0.985 -0.988 0.99 1 

 

Appendix Table 15: Inter-Item Correlations for Experiment 7 

Inter-Item Correlations for Exp. 7 
  Part1 Part2 Part3 Part4 

Part1 1       
Part2 0.946 1     
Part3 0.927 0.932 1   
Part4 0.944 0.948 0.952 1 

 

Appendix Table 16: Inter-Item Correlations for Experiment 8 

Inter-Item Correlations for Exp. 8 
  Part1 Part2 Part3 Part4 

Part1 1       
Part2 0.825 1     
Part3 0.821 0.827 1   
Part4 0.835 0.841 0.845 1 
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Observations 
 
The results here are also as expected. Note that the mixed SKEW assumptions (some group 
elements skewed LEFT and some skewed RIGHT) do affect the results somewhat, but the 
results are still consistent.  If group elements all move together, there is a potential cost 
increase of 21.9% at the 99% confidence level.  If two elements move against the group 
(Exp. 6), there is a potential cost decrease of 23.4%. Correlation coefficients again track quite 
closely to strength values. 
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