

Cost Risk Analysis Made "Simple"

Alfred Smith, Dr. Shu-Ping Hu AIAA 30 September 2004

Los Angeles
 Washington, D.C.
 Boston
 Chantilly
 Huntsville
 Dayton
 Santa Barbara
 Albuquerque
 Colorado Springs
 Columbus
 Ft. Meade
 Ft. Monmouth
 Montgomery
 Ogden
 Patuxent River
 Pensacola
 San Diego
 Charleston
 Cleveland
 Denver
 New Orleans
 Oklahoma City
 Silver Spring
 Warner Robins AFB
 Vandenberg AFB

Outline

- Setting the Stage: Overview of DoD Risk Guidance
- Six Step Cost Risk Analysis Approach
 - Focus on cost risk, configuration risk and correlation
- Demonstrate that Crystal Ball, @RISK, FRisk and ACE RI\$K risk tools give the same results for the same problem (including correlation application).
- Concluding Observations

Setting the Stage

em Integration/Test

rational Test and Evaluation

- Risk Management Policies from DoD 5000.4-M Cost Analysis Guidance and Procedures <u>http://acc.dau.mil/simplify/ev.php?ID=6388_201&ID2=D0_TOPIC</u>
- Department of the Army Cost Analysis Manual May 2002 <u>http://www.ceac.army.mil/ce/default.asp</u>
- (Air Force) Cost Analysis Guidance And Procedures 1 October 1997 <u>http://www.saffm.hq.af.mil/afcaa/</u>
- NASA Cost Estimating Handbook 2002 <u>http://www.jsc.nasa.gov/bu2/NCEH/</u> <u>http://www.jsc.nasa.gov/bu2/conferences/NCAS2004/index.htm</u>
- FAA Life Cycle Cost Estimating Handbook v2 03 Jun 2002 <u>http://www.faa.gov/asd/ia-or/lccehb.htm</u>

Parametric Estimating Initiative (PEI) Parametric Estimating Handbook Spring 1999 <u>http://www.ispa-cost.org/PEIWeb/newbook.htm</u>

Common Cost Risk Analyst Observations

Analysts want...

- Clear guidance on how to conduct cost risk analysis
- Standard expectations for quality and completeness

Consistent approaches for:

- Interpreting the point estimate CER (mean?, median? mode?, other?)
- Sensitivity analysis vs. stochastic analysis?
- Selecting a distribution and its bounds? Are there defaults?
- Defining dispersion and/or correlation
- Adjusting risk for schedule/technical concerns?
- Planned growth (i.e., weight, power, operational profile, etc margins).
- Risk allocation
- BY vs. TY presentation

Analysts want to improve the quality of their risk adjusted cost estimates in a more productive/repeatable way.

Six Step Cost Risk Analysis Approach

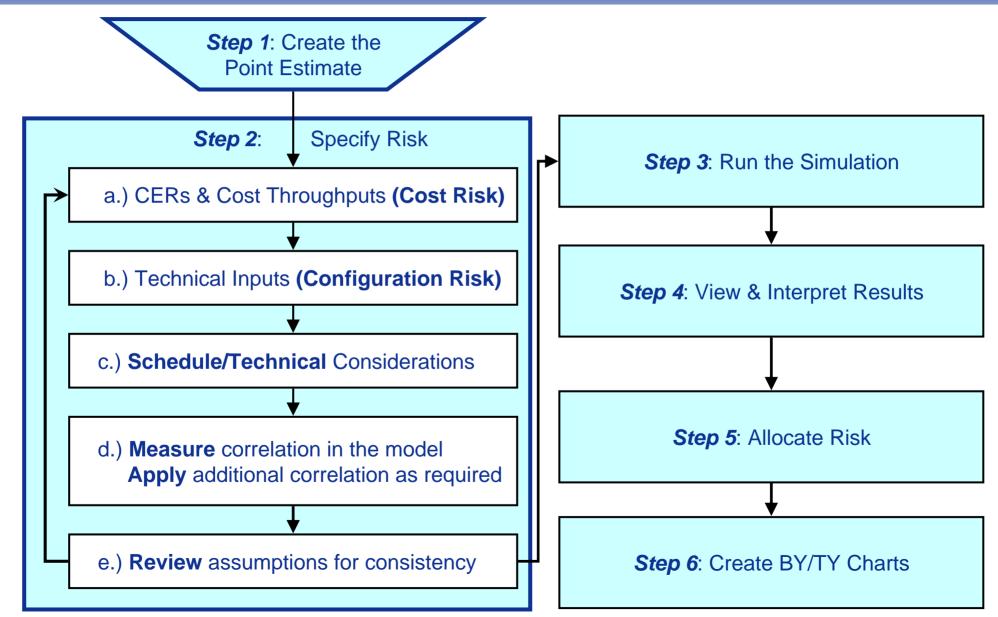
Integration/Test

tional Test and Evaluation

Definitions and Sources of Cost Risk and Cost Uncertainty

Risk stems from a known probability distribution

- Cost estimating methodology risk
- Cost factors such as inflation, labor rates, labor rate burdens, etc
- Configuration risk (variation in the technical inputs)
- Schedule and technical risk
- Correlation between risk distributions


<u>Uncertainty</u> stems from an *unknown* probability distribution

- Potential for massive requirements changes
- Budget Perturbations, Congressional actions
- Re-work, and re-test phenomena
- Contractual arrangements (contract type, prime/sub relationships, etc)
- Potential for disaster (labor troubles, shuttle loss, satellite "falls over", war, etc)
- Probability that if a discrete event occurs it will invoke a project cost
- NOT the subject of this presentation

Tecolote Research, Inc.

12/2/2004

Cost Risk Analysis Approach

Step 1: The Point Estimate

WBS/CES Description	Appro	Unique ID	BASELIN	Pha sing	Equation / Throughput	Fiscal Year	Units
Pavload (P/L) Non Recu	SFCDC	*Payload	\$ 42,071 ×				
Payload IA&T	SFCDC		\$ 7,641 ×				
Integration, Assembly, Te	SFCDC		\$ 6,595 ×	BE	850.764 + 0.159 * PLPME	1992	\$K
Software Integration	SFCDC		\$ 1,046 ×	BE	.28*PLSW		
Payload PME NR	SFCDC	PLPME	\$ 34,430 ×				
PL Software	SFCDC	PLSW	\$ 3,735 ×	BE	SWPPM\$*(0.682+0.00006*Loc^1.32)		
Pointing Subsystem	SFCDC		\$ 25,480 ×				
Scan Mirror	SFCDC		\$ 1,249 ×	BE	70.215 * ScanMirrorStrWt^0.830	1992	\$K
Gimbal	SFCDC		\$19,041 ×				
Gimbal Structure	SFCDC		\$ 3,257 ×	BE	70.215 * GimbalStrWt^0.830	1992	\$K
Motor Drive Electro	SFCDC		\$ 892 ×	BE	416.033+23.754*MotorDrvPcdWt	1992	\$K
LOS Computer	SFCDC		\$ 7,785 ×	BE	256.878*LosCompDeWt	1992	\$K
IMU electronics	SFCDC		\$ 7,108 ×	BE	256.878*IMUElecDeWt	1992	\$K
Payload Reference Be	SFCDC		\$ 5,190 ×	BE	70.215 * BenchStrWt^0.830	1992	\$K
Thermal Control Subsyste	SFCDC		\$ 5,215 ×				
Active	SFCDC		\$ 2,631 ×	BE	205.155*TCSActiveThWt^0.635	1992	\$K
Passive	SFCDC		\$ 2,584 ×	BE	205.155*TCPassThWt^0.635	1992	\$K
*INPUT VARIABLES		*IN_VAR					
Monthly Software developmer	SECDC	SWPPM\$	\$ 21 ×		20	2001	\$K
Software for payload SLOC	0.000	Loc	* 0,000 ×		80000		• •••
Scann Mirror weight		ScanMirrorStrWt	23 ×		23		
Gimbal structure weight		GimbalStrWt	73×		73		
Gimbl Drive motor weight		MotorDrvPcdWt	11 ×		11		
Los Computer weight		LosCompDeWt	23 ×		23		
IMU weight		IMUElecDeWt	21 ×		21		
Sensor Optical bench weight		BenchStrWt	128 ×		128		
Payload active thermal contro		TCSActiveThWt	36 ×		36		
Payload passive thermal contr		TCPassThWt	35 ×		35		

TECOLOTE

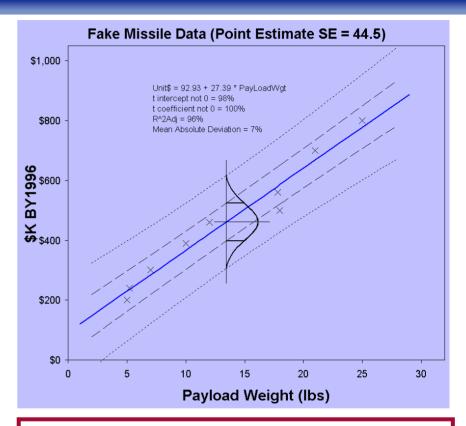
RESEARCH, **I**NC.

Elements of a Point Estimate:

- R&D, Procurement, and O&S
- Software, Hardware & Personnel
- Inherent levels of indenture
- Combination of methods:
 - Engineering build-ups
 - Linear/non-linear CERs
 - Pass-throughs, etc.
- CERs derived from historical data
- CERs (Judgmental)
- Inflation, learning, fee/overhead
- Phased & non-phased variables
- BY & TY phased results

Decision Required: Define what should be addressed in a <u>risk analysis</u> (vs. sensitivity analysis).

Objective Distribution Selection

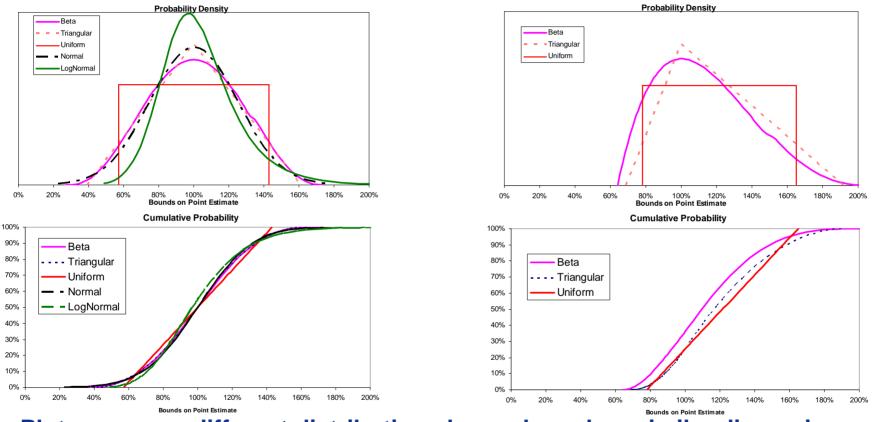

- OLS CERs produce the "**mean**" (also the mode/median), error is **normally** distributed.
- Log Space OLS CERs produce the "median", error is log-normal in unit space.
- MUPE CERs usually produce the "**mean**", where error is **normally** distributed.

Subjective Distribution Selection

- Analysts will often declare that risk will be nonsymmetrical about the CER result.
- Risk on non-parametric CERs (analogy, buildup, through-puts) are almost always subjective.
- Log-normal, weibull, or beta are popular to avoid a sharp peakness around the mode with at least some probability of a large overrun.

Bounds

- Statistical analysis (objective)
- Expert Opinion (subjective)



Suggestion:

- Publish the objective distribution shape for each regression technique.
- Define how to interpret the CER (mean or median).
- Provide guidance on what to pick if there is a basis to depart from the objective shapes.

Step 2.a: Define "Standard" Distribution Shapes and Bounds

Plots compare different distribution shapes based on similar dispersion

Suggestion:

- Publish "standard" distribution shapes and bounds.
- Develop tables for different distribution shapes by commodity.

- Focus is now on the inputs (risk or sensitivity analysis?)
- Frequent sources of cost risk: learning slope, lines of code count, weight, composite labor rates, etc. assumptions
- Modeling considerations:
 - Do CER inputs represent design goals or include allowable margin?
 - Do CER inputs represent the mode/mean/median (normal error) or median (log-normal error) or some other percentile value?
 - Are only discrete sets of CER inputs permissible (i.e. is it inappropriate to model them with continuous risk distributions)?
 - Can CER inputs be functionally linked? For instance, can airframe weight be estimated from the engine weight?

Suggestion: Publish "default" input variable interpretation, distribution shapes, and bounds based upon commodity type.

- Difficult to isolate schedule from technical cost impacts. Many approaches assess the impact together.
- Compare the project you are estimating to the CER source data.
- CERs, estimating methods, analogy and expert opinion estimating processes are influenced by past, real projects.
- Estimating methods capture some "nominal" schedule/technical cost impact (contributes to OLS error term?).
- Realistically assess the degree to which the schedule and technical considerations compare to the CER source.
- Subjective assessment.

Decision Required:

Develop a default method for adjusting risk distributions to capture schedule and technical considerations:

- Parametric approach penalty factor, additional distribution, etc
- Employ schedule and EVM experts to explicitly model the schedule risk.

- Modeling considerations often overlooked when trying to assess the correlation <u>already present</u> in the cost model
 - Functional relationships between the input variables.
 - Functional relationships between WBS elements.
 - More than one CER sharing same risk-adjusted input variable. (Most common: learning slope).
 - Same CER used in multiple places in the cost model.
 - Same phased buy quantity applied to multiple cost elements.
- Measure to determine if more correlation is required.

TECOLOTE RESEARCH, INC.

<u>Measure</u> Correlation Present in The Cost Model

	WBS/CES	Row 14: Integr ation,	Row 15: Softw	Row 17: PL Softw	Row 19: Scan Mirror	Ro w 21: Gimba I		Row 23: LOS Compu	Row 24: IMU	Ro w 25: Payloa d	Row 27: Active	Row 28: Passiv
14	Integration, Assembly, Test ar	1.00	0.07	0.08	0.05	0.11	0.04	0.24	0.23	0.16	0.03	0.08
15	Software Integration		1.00	0.90	0.02	0.04	-0.07	-0.01	0.00	0.00	-0.03	0.01
17	PL Software			1.00	0.01	0.01	-0.03	0.00	-0.01	-0.00	-0.03	0.00
19	Scan Mirror				1.00	-0.02	0.01	0.05	0.03	0.03	0.02	-0.03
21	Gimbal Structure					1.00	0.01	0.01	-0.01	0.03	0.04	-0.03
22	Motor Drive Electronics						,	-0.02	0.10	-0.01	0.03	-0.06
23	LOS Computer	Point						1.00	0.02	0.04	-0.08	0.02
24	IMU electronics	stimate	、 I	Mean	Std I	Dev 📋	CoV		1.00	-0.00	-0.03	-0.05
25	Payload Reference Ben	sundt	;							1.00	0.00	-0.04
27	Active										1.00	-0.00
28	Passive \$4	2,071 (2	9%)	\$ 48,673	8 \$10),826	0.2	2				1.00

Measured Pearson product moment correlation

		WBS/CES	Row 14: Integr ation,	Row 15: Softw	Row 17: PL Softw	Row 19: Scan Mirror	llaimha	Row 22: Motor Drive	Row 23: LOS	Row 24: IMU electr	Row 25: Paylo ad	Row 27: Active	Row 28: Passiv
	14	Integration, Assembly, Test an	d 1.00	0.38	0.31	0.3	2 0.35	0.32	0.47	0.45	0.38	0.35	0.35
	15	Software Integration		1.00	0.91	0.2	3 0.24	0.23	0.26	0.24	0.24	0.26	0.25
	17	PL Software			1.00	0.1	8 0.20	0.18	0.20	0.19	0.19	0.20	0.20
[19	Scan Mirror				1.0	0 0.20	0.21	0.23	0.22	0.20	0.22	0.20
-[21	Gimbal Structure					1.00	0.20	0.23	0.22	0.21	0.22	0.20
-[22	Motor Drive Electronics						1.00	0.23	0.21	0.22	0.22	0.21
[23	LOS Computer							1.00	0.22	0.23	0.22	0.22
[24	IMU electronics	Poi	nt	Mea		Std	CoV		1.00	0.23	0.23	0.22
[25	Payload Reference Bench	Estin	iate	mea		Dev				1.00	0.22	0.23
[27	Active										1.00	0.23
[28	Passive	\$ 42,07	1 (36%)	\$ 48,	955	\$ 15,793	3 0.3	32				1.00

Correlation after layering an additional 20% across all elements

Unintentional Correlation?

	WBS/CES Description	BASELINE	Uniqu e ID	Equation / Throughput	Curve Slope	Distributio n Form	Low or Low %	High or High %	Spread	Skew
44	Procurement	\$ 56,633 (26%) ×	Proc\$							
45	Manufacturing	\$ 41,543 (30%) *	Manuf\$							
46	Non Recurring	\$ 506 (23%) ×		500		Uniform	80%	200%		
47	Recurring	\$ 41,037 (30%) *								
48	Missile	\$ 23,607 (37%) *		64.59 * Wgt ^ 0.7649	AntSlp	LogNormal	87.29%	114.56%		
49	Antenna	\$ 15,156 (29%) *	Ant\$	0.3808 * Aper ^ 1.244	AntSlp	LogNormal	85.5%	116.9%		
50	Integration	\$ 2,273 (26%) ×		0.15*Ant\$		Beta			Medium	Right
51	SE/PM	\$ 10,024 (37%) *		0.2413 * Manuf\$		Normal	54.2%	145.8%		
52	Other	\$ 5,065 (10%) *		5000		Triangular	100%	200%		
57										
59	Antenna Lrning Slope	90.0 (37%) *	AntSlp	90		Uniform	85	100		

Same risk adjusted slope variable for missile/antenna.

	WBS/CES	Row 37: Total	Row 44: Procu	Row 45: Manu	Row 47: Recu	Row 48: Missil	Row 49: Anten	Row 50: Integr	Row 51: SE/P M	80.0% Level
37	Total	1.00	0.90	0.90	0.90	0.68	0.88	0.79	0.68	\$ 177,979.07
44	Procurement		1.00	0.97	0.97	0.83	0.88	0.79	0.80	\$ 91,714.58
45	Manufacturing			1.00	1.00	0.85	0.91	0.81	0.66	\$ 67,666.46
47	Recurring				1.00	0.85	0.91	0.81	0.66	\$ 66,884.04
48	Missile					1.00	0.56	0.48	0.56	\$ 35,638.72
49	Antenna						1.00	0.87	0.60	\$ <u>28,166.22</u>
50	Integration							1.00	0.54	\$ 4,798.61
51	SE/PM								1.00	\$ 17,645.23

Much worry over possible <u>underestimated</u> correlation

 No apparent concern over
 possible <u>excessive</u> correlation

Removing <u>Unintentional</u> Correlation

	WBS/CES Description	BASELINE	Uniqu e ID	Equation / Throughput	Curve Slope	Distributio n Form	Low or Low %	High or High %	Spread	Ske w
44	Procurement	\$ 56,633 (18%) *	Proc\$							
45	Manufacturing	\$ 41,543 (21%) *	Manuf\$							
46	Non Recurring	\$ 506 (23%) *		500		Uniform	80%	200%		
47	Recurring	\$ 41,037 (22%) *								
48	Missile	\$ 23,607 (37%) *		64.59 * Wgt ^ 0.7649	MissSlp	LogNormal	87.29%	114.56%		
49	Antenna	\$ 15,156 (29%) *	Ant\$	0.3808 * Aper ^ 1.244	AntSlp	LogNormal	85.5%	116.9%		
50	Integration	\$ 2,273 (26%) *		0.15*Ant\$		Beta			Medium	Right
51	SE/PM	\$ 10,024 (34%) *		0.2413 * Manuf\$		Normal	54.2%	145.8%		
52	Other	\$ 5,065 (10%) *		5000		Triangular	100%	200%		
57										
59	Antenna Lrning Slope	90.0 (37%) ×	AntSlp	90		Uniform	85	100		
60	Missile Lrning Slope	90.0 (37%) *	MissSlp	90		Uniform	85	100		

Need separate slope variable for the missile.

	WBS/CES	Row 37: Total	Ro w 44: Procu	Ro w 45: Manuf	Row 47: Recur	Row 48: Missil	Ro w 49: Anten	Row 50: Integr	Row 51: SE/P M	80.0% Level
37	Total	1.00	0.86	0.85	0.85	0.33	0.82	0.73	0.61	\$173,903.81
44	Procurement		1.00	0.96	0.96	0.59	0.75	0.68	0.77	\$ 87,848.49
45	Manufacturing			1.00	1.00	0.62	0.78	0.71	0.58	\$ 64,449.32
47	Recurring				1.00	0.62	0.78	0.71	0.58	\$ 63,686.82
48	Missile					1.00	0.00	-0.01	0.36	\$ 35,457.46
49	Antenna						1.00	0.87	0.46	\$ 28,166.22
50	Integration							1.00	0.42	\$ 4,798.61
51	SE/PM								1.00	\$17,298.13

- Missile/ Antenna correlation now 0.
- Rec cost is now 5% less.

Decisions Required: Define Correlation Strength • Strong (.9?) • Moderate (.6?) • Weak (.2?) When to apply?

12/2/2004

Copyright © 2004 Tecolote Research, Inc.

Step 2.e Review for Consistency

WBS/CES Description	Unique ID	BASELINE	Equation / Throughput	Distributi on Form	Spread	LogNor mal	Low or Low %	High or High %	Groupin	Group Strength
Pavload (P/L) Non Recurring	*Payload	\$ 42,071 (36%) *								
Payload IA&T	Ĭ	\$ 7,641 (43%) *								
Integration, Assembly, Test an		\$ 6,595 (44%) *	850.764 + 0.159 * PLPME	Normal			35.3%	164.7%	CER	.4472
Software Integration		\$ 1,046 (40%) *	.28*PLSW	Normal	Low				CER	.4472
Payload PME NR	PLPME	\$ 34,430 (35%) ×								
PL Software	PLSW	\$ 3,735 (38%) ×	SWPPM\$*(0.682+0.00006*Loc^1.32)	LogNormal		.25			CER	.4472
Pointing Subsystem		\$ 25,480 (36%) ×								
Scan Mirror		\$ 1,249 (45%) *	70.215 * ScanMirrorStrWt^0.830	Normal			37.4%	162.6%	CER	.4472
Gimbal		\$ 19,041 (36%) *								
Gimbal Structure		\$ 3,257 (45%) *	70.215 * GimbalStrWt^0.830	Normal			39%	161%	CER	.4472
Motor Drive Electronics		\$ 892 (46%) ×	416.033+23.754*MotorDrvPcdWt	Normal			25.1%	174.9%	CER	.4472
LOS Computer		\$ 7,785 (42%) ×	256.878*LosCompDeWt	Normal			5.7%	194.3%	CER	.4472
IMU electronics		\$ 7,108 (42%) ×	256.878*IMUElecDeWt	Normal			5%	195%	CER	.4472
Payload Reference Bench		\$ 5,190 (45%) ×	70.215 * BenchStrWt^0.830	Normal			40.6%	159.4%	CER	.4472
Thermal Control Subsystem (T		\$ 5,215 (44%) ×								
Active		\$ 2,631 (45%) ×	205.155*TCSActiveThWt^0.635	Normal			35.8%	164.2%	CER	.4472
Passive		\$ 2,584 (45%) *	205.155*TCPassThWt^0.635	Normal			35.7%	164.3%	CER	.4472
*INPUT VARIABLES	*IN_VAB									
Monthly Software development cos	SWPPM\$	\$ 21 ×	20							
Software for payload SLOC	Loc	80,000 (32%) ×	80000	Triangular			90%	130%	Inputs	0.4472
	ScanMirrorStrWt	23 (32%) ×	23	Triangular			90%	130%	Inputs	0.4472
Gimbal structure weight	GimbalStrWt	73 (32%) ×	73	Triangular			90%	130%	Inputs	0.4472
Gimbl Drive motor weight	MotorDrvPcdWt	11 (32%) ×	11	Triangular			90%	130%	Inputs	0.4472
Los Computer weight	LosCompDeWt	23 (32%) ×	23	Triangular			90%	130%	Inputs	0.4472
IMU weight	IMUElecDeWt	21 (32%) ×	21	Triangular			90%	130%	Inputs	0.4472
Sensor Optical bench weight	BenchStrWt	128 (32%) ×	129	_			90%	130%	Innute	0.4472
Payload active thermal control wgt Payload passive thermal control we			nds expressed as %	of poir	nt est	imate	are:			
		• E	asier to understand							

• Scale with changes to the point estimate

• Provides a consistent basis for comparison

Simulation tool results are influenced by:

- Interpretation of point estimate
- Truncation assumption
- Number of iterations
- If using Latin Hypercube [LHC], the number of partitions
- Random seed

When the above assumptions are consistent (as far as possible), ACE, Crystal Ball, @Risk and FRisk all produce similar results.

Decision Required:

- Identify acceptable risk simulation tools
- Provide guidance on how they should be applied

Step 4: View and Interpret Results

WBS/CES	Point Estimate	Mean	Std Dev	CoV	5.0% Level	10.0% Level	50.0% Level	90.0% Level	95.0% Level
Pavload (P/L) Non Recurring	\$ 42,071 (35%)	\$ 49,068	\$ 17,493	0.36	\$ 22,111	\$ 26,437	\$ 47,830	\$ 70,960	\$ 78,692
Payload IA&T	\$ 7,641 (43%)	\$ 9,350	\$ 5,372	0.57	\$ 2,241	\$ 3,250	\$ 8,534	\$ 16,434	\$ 18,946
Integration, Assembly, Test an	\$ 6,595 (44%)	\$ 8,126	\$ 5,113	0.63	\$ 1,325	\$ 2,316	\$ 7,339	\$ 15,016	\$ 17,155
Software Integration	\$ 1,046 (41%)	\$1,224	\$ 478	0.39	\$ 601	\$ 708	\$ 1,143	\$ 1,841	\$ 2,095
Payload PME NR	\$ 34,430 (35%)	\$ 39,718	\$ 12,975	0.33	\$ 18,868	\$ 22,420	\$ 39,297	\$ 56,580	\$ 61,649
PL Software	\$ 3,735 (38%)	\$ 4,317	\$ 1,371	0.32	\$ 2,457	\$ 2,726	\$ 4,161	\$ 6,061	\$ 6,935
Pointing Subsystem	\$ 25,480 (37%)	\$ 29,764	\$ 11,158	0.37	\$12,340	\$ 15,083	\$ 29,528	\$ 44,450	\$ 49,257

Risk analysis will give context to the point estimate

- CoV (Stdev/Mean), confidence of the point estimate (PEcI) and quartile range are useful measures of the overall risk in the cost model.
- Observations in DoD Estimates:
 - Estimates rich in parametric CERs: 15%<CoV<45%, and 5%<PEcl<30%
 - Estimates rich in build-up methods: 5%<CoV<15%, and 30%<PEcl<45%

Suggestion: Identify reasonable, commodity-based metrics the analyst can use to assess the completeness and possibly the quality of the risk analysis as it is being developed. **NASA has done so with the CRL concept.**

Confidence level results do not add

• Mathematicians are quite happy with this result, budget folks are not.

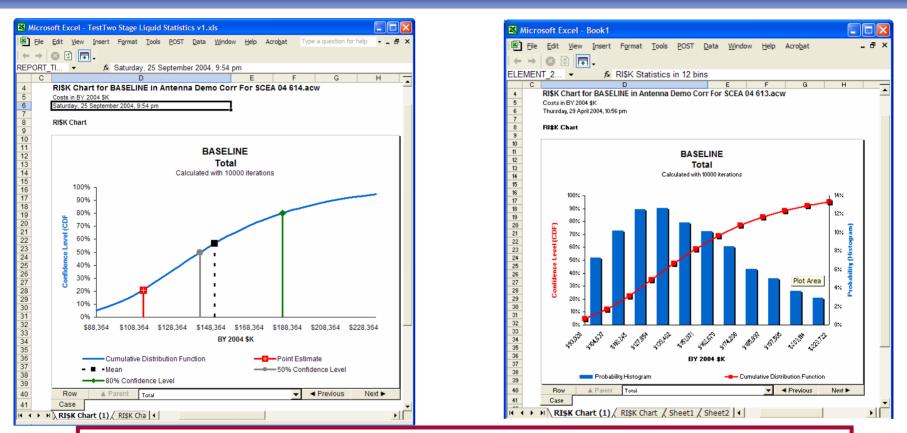
Results must:

- Be phased in both BY (constant year) and TY\$ (real dollars?)
- Add up
- Significant issues must be resolved to define a phased, risk allocation method with consistent BY and TY results (where TY inflation rates are developed from assumed spend profiles)
- Phasing assumptions will have <u>significant impact</u> on TY results.

Decision Required:

- Choose the "standard" risk allocation approach, including how the cost risk dollars should be phased.
- Cost models should be flexible enough to phase the risk dollars consistent with the program managers risk mitigation plans.

Allocated Risk Report


	6.1 - [NASA USCM7 Simple E Edit Workscreen Calc Tools			Phased Cost	s (FY2003 §	SK, Time Ph.		X
		<u>window r</u>	<u>T</u> elb					^
								-
			I					•
	Cost Element	Approp	Total	FY 2005	FY 2006	FY 2007	FY 2008	
2	* Base Year of Calculation		2003					
3	* Time of Calculation		09:26:17					
4	* Date of Calculation		20Jul2004					
5	* System Inflation Table for Calcula		04, 29/APR/2004					
6	* Risk Iterations		10000					
7	* Risk Calculation Confidence Leve		70					
8	* Risk Allocation		2 WBS Elements>					
9	* Time ACE Session Last Saved		23:51:26					
10	* Date ACE Session Last Saved		19Jul2004					
11								
12	Pavload (P/L) Non Recurring	SFCDC		\$ 37,152	\$ 10,449	\$ 8,849	\$ 422	
13	Payload IA&T	SFCDC		◀ ───	\$ 4,537	\$6,331	\$ 307	
14	Integration, Assembly, Test ar	SFCDC			\$ 3,977	\$ 5,543	\$ 269	
15	Software Integration	SFCDC			\$ 561	\$ 782	\$ 38	
16	Payload PME NR	SFCDC	\$ 45,697 (70%)	\$ 37,152	\$ 5,912	\$ 2,518	\$ 115	
17	PL Software	SFCDC		\$ 2,495	\$ 2,260			
18	PL Software Pointing Subsystem	SFCDC SFCDC	\$ 34,372 (68%)	\$ 34,372				
18 19	PL Software Pointing Subsystem Scan Mirror	SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%)	\$ 34,372 \$ 1,612				
18 19 20	PL Software Pointing Subsystem Scan Mirror Gimbal	SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%)	\$ 34,372 \$ 1,612 \$ 26,161				
18 19 20 21	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure	SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040				
18 19 20 21 22	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125				
18 19 20 21 22 23	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963				
18 19 20 21 22 23 24	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033				
18 19 20 21 22 23 24 25	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics Payload Reference Bench	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%) \$ 6,599 (66%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033 \$ 6,599	\$ 2,260			
18 19 20 21 22 23 24 25 26	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics Payload Reference Bench Thermal Control Subsystem (T	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%) \$ 6,599 (66%) \$ 6,570 (68%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033 \$ 6,599 \$ 285	\$ 2,260	\$ 2,518	\$ 115	
18 19 20 21 22 23 24 25 26 27	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics Payload Reference Bench Thermal Control Subsystem (T Active	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%) \$ 6,599 (66%) \$ 6,570 (68%) \$ 3,325 (65%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033 \$ 6,599 \$ 285 \$ 144	\$ 2,260 \$ 3,652 \$ 1,848	\$ 1,274	\$ 115	
18 19 20 21 22 23 24 25 26	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics Payload Reference Bench Thermal Control Subsystem (T	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%) \$ 6,599 (66%) \$ 6,570 (68%) \$ 3,325 (65%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033 \$ 6,599 \$ 285	\$ 2,260		\$ 115	•
18 19 20 21 22 23 24 25 26 27	PL Software Pointing Subsystem Scan Mirror Gimbal Gimbal Structure Motor Drive Electronics LOS Computer IMU electronics Payload Reference Bench Thermal Control Subsystem (T Active	SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC SFCDC	\$ 34,372 (68%) \$ 1,612 (66%) \$ 26,161 (66%) \$ 4,040 (63%) \$ 1,125 (63%) \$ 10,963 (63%) \$ 10,033 (64%) \$ 6,599 (66%) \$ 6,570 (68%) \$ 3,325 (65%)	\$ 34,372 \$ 1,612 \$ 26,161 \$ 4,040 \$ 1,125 \$ 10,963 \$ 10,033 \$ 6,599 \$ 285 \$ 144	\$ 2,260 \$ 3,652 \$ 1,848	\$ 1,274	\$ 115	-

In this example, risk funds managed from the 2nd level (70%)

- Total project dollars required are greater than 70% CL overall
- All numbers "add"

Step 6: Charts and Tables

Decision Required:

- Identify the standard charts and their contents to be presented to management.
- Ensure consistent x and y-axis arrangements.
- Determine "if" a TY S-curve should be presented and if so, define the process to be used.

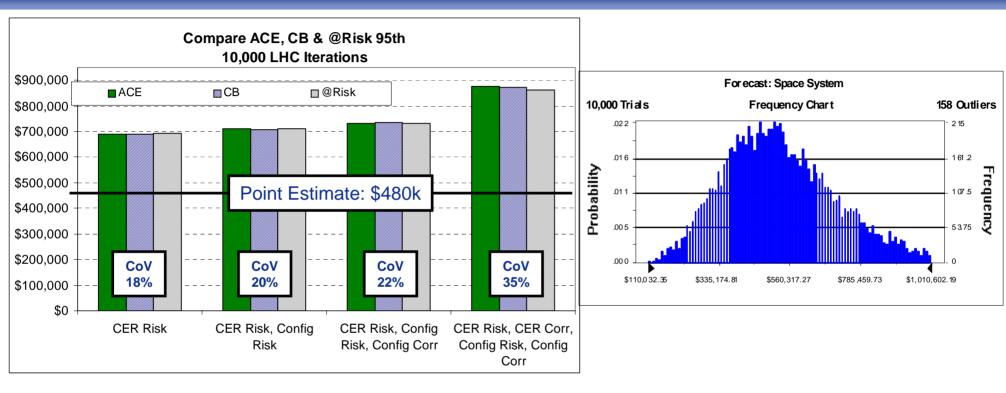
Compare Cost Risk Tools

m Integration/Test

ational Test and Evaluation

- What are the risk tools and which should I choose?
- ACE RI\$K, Crystal Ball, @Risk and FRisk <u>results</u> are compared.... Not their usability or suitability.
- One case study examined (SCEA paper has three):
 - Published, simple and analytically solved case studies (SCEA paper June 04, Reference 5).
 - Example is based upon a more "realistic" cost model (Reference 7).

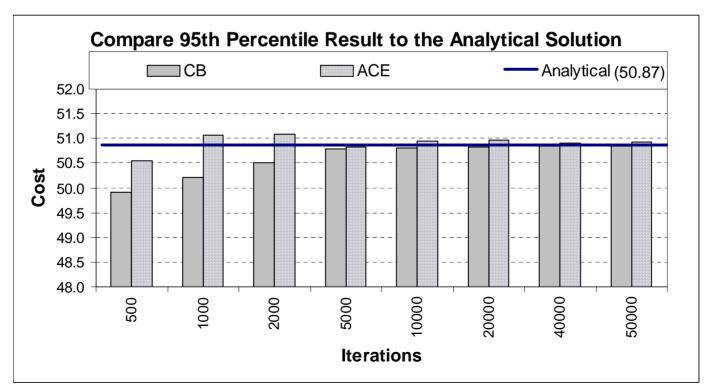
If handled properly, <u>all tools produce similar total</u> <u>cost distribution results</u>.


A "Realistic" Model

		0	-						7	M		D.				0		D	0	T T	
4	В	С		5	E	H			K	M		N	0	P 1000	1 Per-	Q ations		R Hener-I	S -Cube Co	Dovices	U
4											F	Cha	ndard De		o nera	acions,		Hyper- Iean	Cape CO)5th Perce
5		Iniana P			FY	Levi	LEat		isk	Simulatio	 +	CB	ACE	ACE:	╦┼	СВ			ACE:CB	СВ	ACE
		Inique IC	C Eq	4 11		Low	High	<u>`+-ғ</u>	15K			\$187,627				\$533,741			ACE:CB -0.042		-
8	Space System NR Program Management/Systems Engine	PMOF	1.407*(5)	PLNR+SCNR)^0.841	1992	46.80%	(153.20	-		\$480,48 \$78,84		\$187,627 \$50,241	\$188,448 \$50,417		.44%	\$533,74	•	3,537 9,430	-0.042 0.032		
8			1.487 [F	ENIT+SCINEJ 0.841	1332	40.80%	103.21	~ —		\$78,84 \$125,38		\$50,241 \$57,295	\$55,684 \$55,684			\$89,40	-	9,430 42,118	-0.187		
10	Payload (PrL) Non Recurring Payload IA&T		+		\vdash	+	+	+-	-+	\$120,38		\$97,299 \$14,536	\$00,684 \$14,180		45%	\$142,373		42,118 2,658	-0.182	1 · · ·	
11	Integration, Assembly, Test and Che	ekout (lå	850.74	64 + 0.159 * PLPME	1992	35.30%	164.70	7		\$10,70		\$11,000	\$14,060			φεε,r0		21,526	-0.41/	- 400,100	\$47,863
12	Software Integration			.28"PLSV					1	\$80			\$39					\$1,132		1	\$1,882
13		PLPME	+			1	<u> </u>			\$106,62		\$45,801	\$44,542		.75%	\$119,623		19,461	-0.14%	\$202,048	
14	Optical Telescope Assembly (OTA)		†	i		1	+	+-		\$9,51		\$3,945	\$3,97		.75%	\$9,89		9,882	-0.14%	· ·	
15	Structure		70.215 " ບ	OTASTRWT ^{*0.830}	1992	41.90%	(158.10	2		\$6,21			\$2,98		1			6,295			\$11,655
16	Electrical			OTAELECTR ^{*0,761}					1	\$3,30			\$2,03					3,588		1	\$7,279
17	Pointing Subsystem									\$22,88	7.14	\$8,846	\$9,063		45%	\$24,794	4 \$2.	4,793	-0.012	\$40,592	\$40,863
18	Scan Mirror		70.215 * SCANMIRF	RORSTRWT^0.830	1992	37.40%	(162.60	12	1	\$1,12	1.58	\$566	\$56	5 -0.	.25%	\$1,144	4 \$	\$1,145	0.08%	\$2,162	\$2,154
19	Gimbal									\$17,10		\$7,732	\$7,888	3 2.	.02%	\$18,91	5 \$1	18,919	0.02%	\$32,702	\$32,882
20	Gimbal Structure			IBALSTRWT^0.830		-	-		1	\$2,92			\$1,46					2,982		1	\$5,627
21	Motor Drive Electronics			DTORDRVPCDWT					1	\$80			\$432					\$846		1	\$1,600
22	LOS Computer	ļ		DSCOMPTUDEVT				_	1	\$6,99;			\$4,83					7,872		1	\$16,812
23	► ► Compare USCM 7 C			IMUPMATUDEVT		1 5% k / DE	d 195 EPORT		1	\$6.38	34 31		\$4 44	7	I		\$	7 220		I.	\$15 465
۱ ۱	Microsoft Excel - 4 USCM7	CER Ris	k, CER Corr, Con	ofig Risk, Confi	g Cori	r Cryst	alBall)	AtRisk .	Apr04	4.xls											×
۱ ۱	File Edit View Insert Fi	ormat T	Tools <u>D</u> ata <u>W</u> ind	ndow Help Acro	obat											Т	Type a d	juestion	n for help	B	×
1		<u></u>		Teb Yo	- Date												10000	1	and the party of t		
۱ ۱																					
۱ ۱	U7 v f× 87	5281																			
۱ ۱			AB AC AD /	AE AF AG	AH	AI A	AJ AK	AL	AM	AN AO) AF	P AQ	AR A	S AT	AU	AV	AV I	AX A	AY AZ	BA BB	
1							10														
1																					
۱ ۱																					
۱ ۱															έν	<u>84</u>	တို	e	ب ش	<u>ო</u> წ	
۱ ۱					ŵ	5	ð			ů			<u>به</u>		Spa	Spa	ace 1	မ် ရီ	Spa Spa	aSpaceADCSAII aSpaceEPSPC	
1	<u>ن</u> ه (<u> </u>	ង ធិ	<u>G</u>	å Å	a n	Ť	šp	aSPAP9 ISPADigSig	<u>e</u>	°i	aTCSP	aIATCS) SeO(еT	»TCSP	aceEP	SpaceEF SpaceE	ен Н	
	3	alATC	aOTElec aOTStru	aGimMDE aGimStru	GimLOSC	gioadhe aGimlMl	aFPADe ayloadRe	aFPAAn	aSPAStru	ADigSi	aPLSof	aTCSA	မီ	, <u>C</u>	aceStrM	ŝ	Ϋ́Ρ	PSP o	in di	PSH CS	
1					<u> </u>		<u> </u>					<u> </u>	153	<u><u><u></u></u></u>	<u> </u>	õ	iš.	<u>a à</u>	<u>, </u>		
	4 1 aPMSE 1.000						0.200 0.20							200 0.200	0.200				.200 0.200	0.200 0.20	
	5 2 alATC						0.200 0.20	_	_		_	_		200 0.200	0.200				.200 0.200	0.200 0.20	
l ,	6 3 aSoftInt 7 4 aOTStru	L					0.200 0.20 0.200 0.20				_			200 0.200	0.200				.200 0.200	0.200 0.20	
۱ ۱	8 5 aOTElec).200 0.20).200 0.20	_			_	_		200 0.200	0.200				.200 0.200	0.200 0.20	
1	9 6 aScanM						0.200 0.20							200 0.200	0.200				.200 0.200	0.200 0.20	
l ,	10 7 aGimStru		L	1.000 0.200	0.200	0.200 0.	0.200 0.20	00 0.200	0 0.200	0.200 0.20	0.2	200 0.200	0.200 0.2	200 0.200	0.200	0.200	0.200 0	0.200 0.:	.200 0.200	0.200 0.20	
1	11 8 aGimMDE			1.000			0.200 0.20							200 0.200	0.200				.200 0.200	0.200 0.20	
1	12 9 aGimLOSC			L	1.000		0.200 0.20							200 0.200	0.200				0.200 0.200	0.200 0.20	
1	13 10 aGimIMU	_			L		0.200 0.20	0 0 0 0 0 0 0		0.200 0.20				200 0.200	0.200				0.200 0.200	0.200 0.20	•
401-1	I I I I I Compare ↓ USCM 7	СВ 🖉 🤇	PRISK Correlations	/ USCM 7 @R.	isk 🔏 i	REPORT	(4) /	•												•	
12/2/2	2004				С	`opyrigh	nt © 200	4 Tecu	olote F	Research,	Inc.										26

Copyright © 2004 Tecolote Research, Inc.

USCM 7 Comparison



- More than 30 linear, non-linear, throughput CERs and 30 input values
- Compared total cost result at the 95th percentile based upon a systematic layering of correlation assumptions
- All three tools produce remarkably similar results.

How Many Iterations Required?

- Use Latin Hypercube and maximize the number of partitions. (Crystal Ball default is 500 and max is 5000, ACE and @Risk use the same number of partitions as iterations).
- DO NOT conclude from the chart that ACE stabilizes with fewer iterations than Crystal Ball. Simply changing seed values (or LHC partition in Crystal Ball) can cause the results to "flip/flop".
- Both tools stabilize near 5000 iterations for this model.

Comparing Risk Tools

If you are consistent with:

- How to interpret the point estimate
- Number of iterations.
- If using Latin Hypercube [LHC], the number of partitions.
- Inflation, learning, and other modeled adjustments.
- How functional correlations are modeled
- Distribution shape and bound assumptions.
- Truncation assumptions.

If you follow the tool developer's recommendation for inputting correlation:

ACE, Crystal Ball and @Risk will give similar results.

- Default positions would establish a minimum expectation for estimates not a cookbook
- No need to "over specify" the guidance
- Advanced analysts will still develop sophisticated models to deal with exceptional circumstances
- Establishing a "standard process" will:
 - Focus attention on "building" the estimate rather than defining "how" to build it.
 - Enable more risk analysis practitioners to "do" cost risk analysis <u>with confidence</u>.

BACKUP SLIDES

Step 2.a: Use Basic or Advanced ACE Wizards to set Shapes and Bounds

Selected Row 15 Goto Image: Include Children Image: Include Children	×
 WBS/CES Pavload (P/L) Non Recurring ∑ Pavload IA&T Integration, Assembly, Test a Software Integration ∑ Payload PME NR PL Software ∑ Pointing Subsystem ∑ Thermal Control Subsystem (S INPUT VARIABLES 	
Estimate is likely a lot nore than the actual C Estimate is likely a lot more than the actual C I will define my own distribution specification	

Copyright © 2004 Tecolote Research, Inc.

Step 2a: ACE Spreadsheet Interface Also Available

WBS/CES Description	Unique ID	BASELINE	Equation / Throughput	Distributi on Form	Spread	LogNor mal	Low or Low %	High or High %
Pavload (P/L) Non Recurring	*Payload	\$ 42,071 (36%) ×			Low			
Payload IA&T		\$ 7,641 (43%) ×			Medium	1		
Integration, Assembly, Test an		\$ 6,595 (44%) ×	850.764 + 0.159 × PLPME	Normal	High		35.3%	164.7%
Software Integration		\$ 1,046 (40%) *	.28*PLSW	Normal	Low			
Payload PME NR	PLPME	\$ 34,430 (35%) ×						
PL Software	PLSW	\$ 3,735 (38%) ×	SWPPM\$*(0.682+0.00006*Loc^1.32)	LogNormal		.25		
Pointing Subsystem		\$ 25,480 (36%) ×		Beta	- B			
Scan Mirror		\$ 1,249 (45%) *	70.215 × ScanMirrorStrWt^0.830	LogNormal		og Normal	4%	162.6%
Gimbal		\$ 19,041 (36%) ×		None Normal	- N - N	one ormal		
Gimbal Structure		\$ 3,257 (45%) ×	70.215 * GimbalStrWt^0.830			riangular	3%	161%
Motor Drive Electronics		\$ 892 (46%) ×	416.033+23.754*MotorDrvPcdWt	Uniform		niform	1%	174.9%
LOS Computer		\$ 7,785 (42%) ×	256.878*LosCompDeWt	Weibull	- W	/eibull	J.7%	194.3%
IMU electronics		\$ 7,108 (42%) ×	256.878*IMUElecDeWt				5%	195%
Payload Reference Bench		\$ 5,190 (45%) ×	70.215 * BenchStrWt^0.830	Normal			40.6%	159.4%
Thermal Control Subsystem (T		\$ 5,215 (44%) ×						
Active		\$ 2,631 (45%) ×	205.155*TCSActiveThWt^0.635	Normal			35.8%	164.2%
Passive		\$ 2,584 (45%) *	205.155*TCPassThWt^0.635	Normal			35.7%	164.3%

Point estimate reflects "median" for lognormal, "mode" for all others.

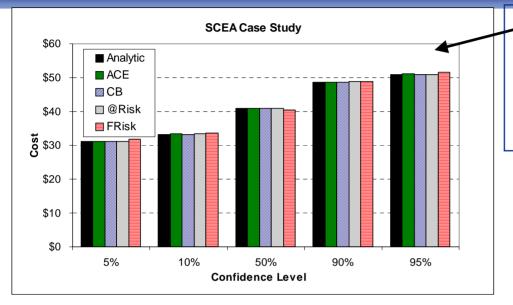
- Right click to choose distribution and "default" spread/skew
- Define upper/lower bounds in terms of % of point estimate at specific confidence levels (may enter absolute values if desired)
- Bracketed numbers in Baseline column reports point estimate confidence level

ACE Correlation Wizard

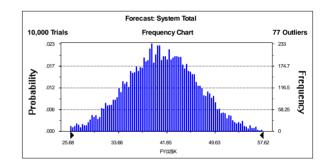
NSK Grouping and Corrolation Note the desired function Ability to force the same correlation across all selected Correlation across all selected Note the desired consider nation Correlation across all selected Correlation across all selected Correlation across all selected Work for a single construction construction Correlation across all selected Vistor of a single column of the desired matrix Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not motivated to fund motor detailed		
A bility to force the same correlation across all selected WBS elements A bility to force the same correlation across all selected WBS elements A bility to force the same correlation across all selected WBS elements A bility to force the same correlation across all selected WBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to force the same correlation across all selected wBS elements A bility to generate the entire matrix from a single column of the desired matrix A CE Government sponsors not A CE Government sponsors not	RISK Grouping and Correlation	
Boult D. ER New Determined A the transmission of the construction matrix from a single column of the desired matrix. Ability to generate the entire matrix from a single column of the desired matrix. Ability to generate the entire matrix from a single column of the desired matrix. AccE Government sponsors multiple columns of the desired matrix.	- Selected Grouping	
Are the assigned strengths to produce the desired correlation multi. 4. We the assigned strengths to produce the desired correlation multi desire at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desire at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desire at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired item at the dominant item in the group. Are the assigned strengths to produce the desired correlation multi desired correlation		Ability to force the same
 Entre a 'D' 'fra a coré strengthio define tas the dominant less in the group. Entre a 'D' 'fra a coré strengthion matrix does not take into account functional correlation et into account functional et into account function et into account et into account et into ac		
 Let ar U⁻¹ tra ar U⁺¹ tra ar U⁺¹ transmitted with a define 1 as the dominant term in the group. Let ar U⁺¹ transmitted multicle to consider multicle into account function construction construction. <u>Apply Cites new Rev</u> <u>asign Construction 0 200 200 200 200 200 200 200 200 200 </u>	- Alter the assigned strengths to produce the desired correlation matrix.	correlation across all selected
Add Row Benove Rive Assign Qurelation of 0 at 14 Integration Assembly. Test Description Total 15 Statuse Total 17 PL Schware Statuse 18 Statuse Correlation 17 PL Schware \$1044 (403) 4472 1000 0200		
W8/CES Description Total Strength 14 15 17 19 21 22 24 2 14 Integration, Assembly, Test \$6586 (43)? 4472 1000 0.200 0.	Please note: The correlation matrix does not take into account functional correlations.	VVBS elements
Ability to generate the entire matrix from a single column of the desired matrix Action of the desired matrix ACEE Government sponsors not	Add Row <u>Remove Row</u> Assign <u>Correlation of:</u> 0.2	
17 PL software integration \$1.046 (403) 4472 1.000 0.200 <td< td=""><td></td><td></td></td<>		
17 PL software 13.785 (383) 4472 1.000 0.200		
21 Ginbal Structure \$3.257 (#5%) 4472 1000 0.200 </td <td>17 PL Software \$ 3,735 (38%) * .4472 1.000 0.200 0.200 0.200</td> <td>0.200 0.</td>	17 PL Software \$ 3,735 (38%) * .4472 1.000 0.200 0.200 0.200	0.200 0.
22 Motor Drive Electronics \$ 932 (453) 4472 1000 0.200 0		
24 INU electronics \$ 7,106 (423) 4472 27 Active \$ 2,531 (453) 4472 28 Paskoad Relerence Bench \$ 2,531 (453) 4472 29 Passive \$ 2,531 (453) 4472 29 Passive \$ 2,531 (453) 4472 29 Passive \$ 2,534 (453) 4472 29 Passive \$ 2,534 (453) 4472 4472 Image: Cancel Help Image: Cancel Help Image: Cancel Help Into addition matrix the dominant item in the group. Image: Cancel Help Into matrix does not take into account functional correlations. Image: Cancel Help Ability to generate the entire matrix from a single column of the desired matrix Add Row Benove Row Asign Contains internal 5 55 Anterna \$ 2000 (203) 0.70 1.000 0.430		
25 Payload Reference Bench \$ 5130 (452) * .4472 1 27 Active \$ 22531 (452) * .4472 .4472 27 Active \$ 22584 (452) * .4472 .4472 28 Passive \$ 22584 (452) * .4472 .4472 1 Its to produce the desired correlation matrix. the top toduce the desired correlation matrix. 1 Its op toduce the desired correlation matrix. the option matrix does not take into account functional correlations. Abbility to generate the entire matrix from a single column of the desired matrix. Accounce the desired matrix. Accounce the desired matrix. ACEE Government sponsors not 63 TT8C 20000 (202) * 0.70 0.000 (202) * 0.70 0.000 (202) * 0.70		Correlation
27 Active \$ 2.631 (453)* 4472 29 Passive \$ 2.584 (453)* 4472 29 Passive \$ 2.584 (453)* 4472 4000//////////////////////////////////		
Apply OK Cancel Help this to produce the desired correlation matrix. tength to define it as the dominant term in the group. this to produce the desired correlation matrix. tength to define it as the dominant term in the group. this matrix des not take into account functional correlations. Add Row Bernove Row Assign Correlation of: 0.3 56 Anterna 80.0000 (202) * 0.70 1.000 0.430 0.430 0.420 0.490 0.560 0.490 0.560 0.700 57 Electronics 92.0000 (202) * 0.70 1.000 0.420 0.490 0.560 0.490 0.560 0.700 58 Structure 76.0000 (202) * 0.70 1.000 0.420 0.490 0.560 0.490 0.560 0.700 59 UX daptor 18.00000 (202) * 0.70 1.000 0.420 0.490 0.420 0.490 0.560 0.490 0.560 0.700 61 ACS/RCS 18.0000 (202) * 0.70 1.000 0.420 0.490 0.560 0.490 0.560 0.700 62 Thermal Control 2.20000 (202) * 0.70 1.000 0.420 0.490 0.560 0.490 0.560 0.700 63 TT&C 200000 (202) * 0.70 1.000 0.560 0.490 0.560 0.700 63 TT&C 200000 (202) * 0.70 1.000 0.420 0.490 0.420 0.490 0.560 0.700 63 TT&C 200000 (202) * 0.70 1.000 0.560 0.490 0.560 0.700 64 Software 30.0000 (202) * 0.80 1 0.000 0.560 0.700 65 Structure 76.5000 (202) * 0.70 1.000 0.420 0.490 0.420 0.490 0.560 0.700 65 Structure 76.5000 (202) * 0.70 1.000 0.420 0.490 0.560 0.700 61 ACS/RCS 50 2.0000 (202) * 0.70 1.000 0.560 0.700 63 TT&C 20.0000 (202) * 0.70 1.000 0.560 0.700 64 Software 30.0000 (202) * 0.80 1 0.000 0.560 0.700 64 Software 30.0000 (192) * D	27 Active \$ 2,631 (45%) * .4472	
Apply OK Cancel Help the to produce the desired correlation matrix. trength to define it as the dominant item in the group. Linn matrix does not take into account functional correlations. Add Row Remove Row Assign Correlation of 0.3 Add Row Remove Row Assign Correlation of 0.3		
Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not		
Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not	Apply OK Cano	
Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not		
Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not		
Ability to generate the entire matrix from a single column of the desired matrix ACE Government sponsors not	A bill to the ment of the event inc	
matrix from a single column of the desired matrix ACE Government sponsors not	Ability to generate the entire	Electronics 92.0000 (20%) × 0.70 1.000 0.490 0.420 0.490 0.560 0.490 0.560 0.700
the desired matrix ACE Government sponsors not	matrix from a single column of	
the desired matrix 62 Thermal Control 22.0000 (20%)* 0.70 1.000 0.560 0.700 63 TT&C 20.0000 (50%)* 0.80 1.000 0.800 64 Software 30.0000 (19%)* 0 1.000 0.800	matrix from a single column of	Power Distribution 54.0000 (20%) × 0.70 1.000 0.560 0.490 0.560 0.700
ACE Government sponsors not	the desired matrix	
ACE Government sponsors not		
Analy OK Cancel Hein	ACE Covernment energy net	Somware pau.0000 (19%) ^ D
motivated to fund more detailed	ACE Government sponsors not	
	motivated to fund more detailed	Apply UN Cancel Help
		Apply OK Cancel Help

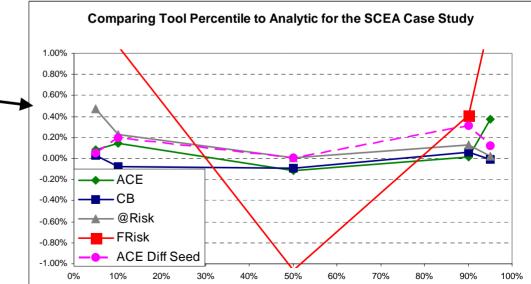
approach, but not against it

Case Study Page CE V – 80 SCEA Training Manual


WBS	Equation/ Throughput	Distrn	Lower	Point Estimate	Upper	Analytic Stdev	ACE Stdev	CB Stdev	@Risk Stdev
Electronic System						6.015	6.013	6.026	5.998
PMP	12.50	Normal		12.500		2.569	2.570	2.569	2.569
SEPM	0.5*PMP			6.250		1.285	1.285	1.284	1.285
Sys Test & Evaluation				4.706		0.811	0.811	0.812	0.809
Sys Test & Eval	0.3125*PMP			3.906		0.803	0.803	0.803	0.803
Management Reser	0.80	Uniform	0.6	0.800	1.0	0.115	0.116	0.115	0.115
Data and Tech Orders	0.1*PMP			1.250		0.257	0.257	0.257	0.257
Site Survey & Activatio	6.60	Tiangular	5.1	6.600	12.1	1.505	1.505	1.505	1.505
Initial Spares	0.1*PMP			1.250		0.257	0.257	0.257	0.257
System Warranty	1.10	Uniform	0.9	1.100	1.3	0.115	0.116	0.115	0.115
Early Prototype Phase	1.50	Triangular	1.0	1.500	2.4	0.290	0.290	0.290	0.290
Operations Supt	1.20	Triangular	0.9	1.200	1.6	0.143	0.143	0.143	0.143
System Training	0.25*PMP			3.125		0.642	0.643	0.642	0.642

Combination of throughput and factor relationships


- No risk applied to the factors
- PMP drives about 70% of the model result, so 70% of the risk is modeled with a normal distribution making it reasonable that the total cost is likely to be normally distributed.
- Sys Test & Eval has an additive risk which is unusual in cost risk analysis. We generally assume the risk scales with the estimate.



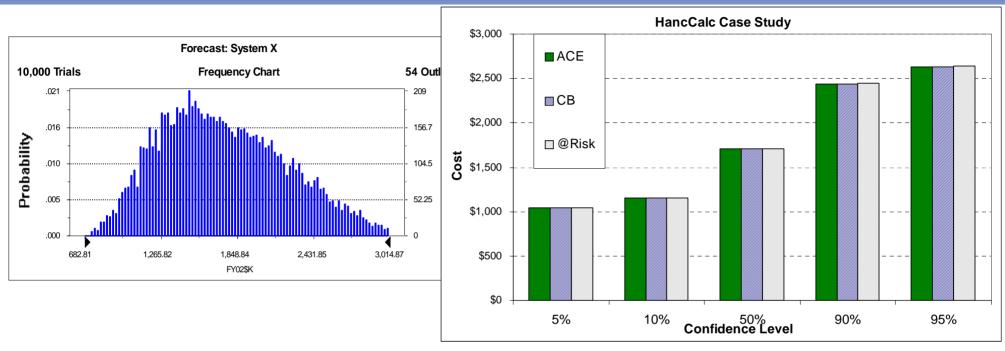
All Tools Perform Well

Use this scale if you wish to show that all models are not bad (FRisk is a little off because it assumes a log-normal distribution at the total level). Note that the simulation tool total result **does** appear "normal".

- Use this scale if you wish to show there are in fact differences amongst the models.
- However, note that the scale is so magnified, that simply changing the initial seed value (ACE is shown, but all behave the same) noticeably changes the results!

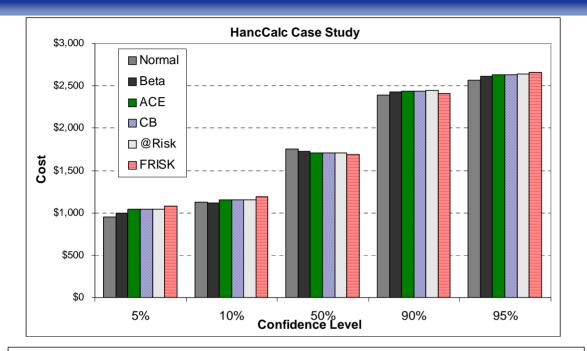
Risk By Hand Calculator (Ref 5)

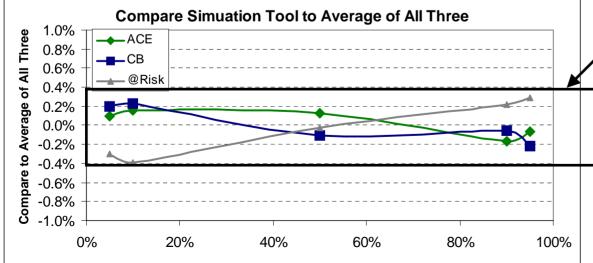
	Point	Mean	Distributi	Lower	Upper	
	Estimate	Mean	on	LOWCI	opper	
System X	1250.000	1,756.00		625	3393	
Antenna	380.00	574.00	Tiangular	191	1151	
Electronics	192.00	290.00	Tiangular	96	582	
Structure	76.00	84.00	Tiangular	33	143	
LV Adaptor	18.00	18.00	Tiangular	9	27	
Power Distribution	154.00	232.00	Tiangular	77	465	
ACS/RCS	58.00	58.00	Tiangular	30	86	
Thermal Control	22.00	33.00	Tiangular	11	66	
TT&C	120.00	120.00	Tiangular	58	182	
Software	230.00	347.00	Tiangular	120	691	


	As Specified Correlation Matrix									
	Antenna	Electronic	Structure	LVAdaptor	PowDistr	ACSRCS	Thermal	ТТС	Software	
Antenna	1.0	Ő.5	0.5	0.6	0.5	0.5	0.3	0.7	0.7	
Electronics	0.5	1.0	0.4	0.5	0.5	0.6	0.5	0.5	0.7	
Structure	0.5	0.4	1.0	0.7	0.6	0.7	0.7	0.5	0.7	
LVAdaptor	0.6	0.5	0.7	1.0	0.4	0.4	0.5	0.3	0.6	
PowDistr	0.5	0.5	0.6	0.4	1.0	0.5	0.5	0.5	0.7	
ACSRCS	0.5	0.6	0.7	0.4	0.5	1.0	0.4	0.7	0.8	
Thermal	0.3	0.5	0.7	0.5	0.5	0.4	1.0	0.5	0.7	
TTC	0.7	0.5	0.5	0.3	0.5	0.7	0.5	1.0	0.8	
Software	0.7	0.7	0.7	0.6	0.7	0.8	0.7	0.8	1.0	
Average	0.59	0.58	0.64	0.56	0.58	0.62	0.57	0.61	0.74	

- No functional relationships.
- Triangular distributions only.
- No need to force tools to truncate distributions at "0".
- Detailed correlation matrix .
- Entered explicitly into CB & @Risk
- Pick column with highest average to enter into ACE.

12/2/2004


Simulation Total Cost Does Not Appear "Normal"



- All simulation tools match each other. Had to use bar chart rather than "S" for comparisons, otherwise impossible to discern different tool result.
- All simulation tools suggest the total cost distribution is <u>not</u> "normal".
- Only nine elements and with correlation layered on top, suggests that the Central Limit Theorem may not be applicable.
- With this information, we were motivated to produce analytical results based on a beta distribution.
- FRisk will provide results based upon a Log-Normal assumption.

Not Clear Which is "Right", Fortunately they are all the "<u>Same"</u>

- Analytic based on beta distribution compares
 "better" to the simulation tools than "normal" or log normal (FRisk)
- All solutions likely well within the total cost estimate confidence
- Difference between simulation tools less than expected "noise" of the applications
 - NOTE: Detailed correlation matrix was explicitly modeled in Crystal Ball and @Risk. This <u>did not</u> "improve" the result.

Theoretical Basis for the ACE Correlation Method

- Pearson's Product Moment Correlation v.s. Spearman's Rank Order Correlation
- ACE uses the Pearson's definition to model correlations in risk simulations.
- Lurie-Goldberg's Simulation Method¹ is summarized in the paper.
- ACE uses a modified Lurie-Goldberg algorithm to create a set of variables that match the user-supplied correlations.

^{1.} Simulating Correlated Random Variables; Philip M. Lurie and Matthew S. Goldberg; Institute for Defense Analyses; 32nd DODCAS; 2-5 February 1999

Differences between ACE and Lurie-Goldberg

- ACE only allows the user to enter a single vector of correlation coefficients where the correlations are relative to the dominant cost driver in a particular "Group" of WBS elements. By doing this, the remaining members of the correlation matrix are "implied" (and therefore consistent) and the algorithm is simplified.
- ACE uses ranks during the simulation process to smooth out the resulting variables to make them suitable for the Latin-Hypercube (LH) simulation. Ranking in this context is for the purpose of generating the LH draws such that they closely resemble the original input distributions, and it should <u>not</u> be confused with rank order correlation.
- ACE does not iterate on the user supplied "Group Strengths" to achieve the desired correlations among the WBS elements. Nonetheless, in our test cases the user-defined group strengths match the desired correlations very closely, all within 0.5%.

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{\sum (Y - \overline{Y})^2}}$$

$$or$$

$$r = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)*(n\sum Y^2 - (\sum Y)^2)}}$$

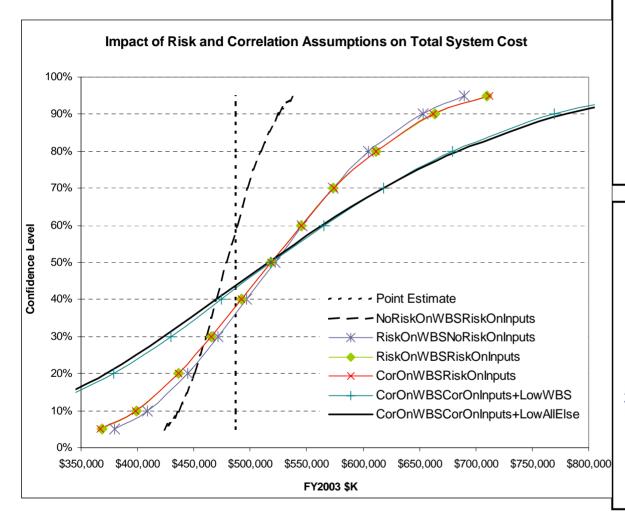
- n = number of ordered pairs
- σ = standard deviation
- μ = mean
- X = first variable of an ordered pair
- Y = second variable of an ordered pair

General Steps for the ACE/RI\$K Algorithm

- Generate n independent draws, Z1, Z2, ...Zn, from a standard normal distribution.
- Construct n <u>correlated</u> standard normal random variables X1, X2, ... Xn using Cholesky's pairwise factorization formula.

$$X_{1} = Z_{1}$$

$$X_{2} = \rho_{2} Z_{1} + \sqrt{1 - \rho_{2}^{2}} Z_{2}$$


$$X_{3} = \rho_{3} Z_{1} + \sqrt{1 - \rho_{3}^{2}} Z_{3}$$
...
$$X_{n} = \rho_{n} Z_{1} + \sqrt{1 - \rho_{n}^{2}} Z_{n}$$

- Generate the corresponding uniform LH draws for the Xi variables consistent with the value of the normal cumulative probability for each of the Xi values.
- Invert the uniform draws by the user-defined marginal distribution Fi:

$$Y_i = F_i^{-1}(U_i)$$

TECOLOTE RESEARCH, INC.

Impact on on Total Cost by Layering Risk Assumptions

In this model, the impact of correlating the Gimbal elements is insignificant. Applying 20% across all remaining WBS elements and inputs increases the cost result at 80% by 12%. The CoV of the final result is 35%.

Applying risk to the CERs and inputs in ACE, before layering correlation, captures most of the risk. Forcing an additional 20% correlation across all WBS elements (other than the Gimbal) does have a significant impact in this model.

Although the CoV of the final result is 35%, it might be excessive. To force even a 20% correlation across all elements is contrary to correlation studies on some datasets.