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RESEARCH, INC. ObjectivesObjectives
Define Minimum Unbiased Percent Error (MUPE) and 
Log-Linear CERs

List pros and cons of MUPE vs. log-error CERs

Review proper use of log-error CERs

Explain why a correction factor is required for log-error 
CERs

Describe and compare two popular log-error correction 
factors: Goldberg and PING
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Objectives

Introduction
Error Term Assumption (Additive vs. Multiplicative)
Multiplicative Error Model (Log-Error vs. MUPE)

Properties of Log-Error CERs

Common Concerns about Log-Error CERs

Pros and Cons of MUPE and Log-Error CERs 

Derivations of Correction Factors (Goldberger/PING)

Comparing Three Ways to Use Log-Linear Equations: 
No Correction, Goldberger Factor Correction, PING Factor Correction

Conclusions
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TECOLOTE
RESEARCH, INC. Additive Error TermAdditive Error Term

Cost variation is 
independent of the 
scale of the project

Additive Error Term :  y = aX^b + ε

X
Note: This requires non-linear regression.

Y

Additive Error Term :  y = f(x) + ε

X
Note: Error distribution is independent of the scale of the project. (OLS)

Y



6/20/2005 5

TECOLOTE
RESEARCH, INC.

TECOLOTE
RESEARCH, INC. Multiplicative Error TermMultiplicative Error Term

Multiplicative Error Term :  y = ax^b * ε

X
Note: This equation is linear in log space.

Y

UpperBound
f(x)
LowerBound

Multiplicative Error Term :  y = (a + bx) * ε

X
Note: This requires non-linear regression.

Y

UpperBound
f(x)
LowerBound

Cost variation is 
proportional to the 
scale of the project



6/20/2005 6

TECOLOTE
RESEARCH, INC.

TECOLOTE
RESEARCH, INC.

Error Term Assumptions –
Background

Error Term Assumptions –
Background

Model form should not drive error term assumption
Error term should not drive model form

 ADDITIVE 
ERROR 

MULTIPLICATIVE  
ERROR (Log Error) 

Distribution Assumption N(0, σ2), independent LN(0, σ2), independent 
Typical Model Form Linear form – y = a + b x + ε Power form – y = a x b ε 
Legitimate Reasons Absolute Errors Proportional Errors 
What should be cost 
errors? 

Cost variation is independent 
of the scale of the project 

Cost variation is proportional to 
the scale of the project 

Statistical measures Traditional statistical 
measures can be used 

Traditional statistical measures 
can be used in the log space 

Shortcomings Not a good method if data not 
homogenous or data range 
over one order of magnitude  

Need correction factor to adjust 
for the mean in unit space 
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Multiplicative Error Model –
MUPE vs. Log-Error

Multiplicative Error Model –
MUPE vs. Log-Error

Note:

E( (Y-f(x)) / f(x) ) = 0

V( (Y-f(x)) / f(x) ) = σ 2

MUPE: E(ε ) = 1, V(ε ) = σ2 Least squares in unit space

Error = (Y-f(x)) / f(x)
Minimize Σi {(yi - f(xi))/ fk-1(xi)}2

where k is the iteration number

Definition of cost variation for Y = f(x)*ε

Log-Error:  ε ~ LN(0, σ2)    Least squares in log space

Error = Log (yi) - Log f(xi)
Minimize Σi (Log (yi) - Log f(xi))2
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RESEARCH, INC. Properties of Log-Error CERsProperties of Log-Error CERs

At a given x value xo, if Y = f(x)ε, where ε ~ LN(0, σ 2), then

E(Y/x = xo) = µA = f(xo)eσ2/2 

Median (Y/x = xo) = MA = f(xo)
Mode (Y/x = xo) = f(xo)e-σ2

Stdev (Y/x = xo) = f(xo)(eσ2 - 1)0.5

)2/exp( 2σµ =AA M

The log-linear equation will be biased low 
if we do not apply correction factors
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Comparing Mean, Median, and Mode for Log-normal Distribution

Log-Normal pdf

X

Y

Median MeanMode
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Common Concerns about 
Log-Error CERs (1/2)

Common Concerns about 
Log-Error CERs (1/2)

Errors not expressed in meaningful units (“log dollars”)
Minimizing ∑(log εi)2 is not the same as minimizing ∑εi

2

Std Error of Estimate (SEE) in nonlinear case                   
cannot be compared with SEE in linear case                 
to see which functional form is the better estimator 
We must choose the power form CER to use the log 
error assumption

If you choose nonlinear functional form, you must assume 
multiplicative-error model; if you choose linear functional 
form, you must assume additive error model 
The major casualty is that you do not have access to the non-
linear functional form y = a + b xc

Correction factors needed because the resultant 
equation will be biased low in unit space

∑−
2)(log

2
1
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ε

∑−
2

2
1
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Common Concerns about 
Log-Error CERs (2/2)

Common Concerns about 
Log-Error CERs (2/2)

If Y = f(x)*ε and ε > 0   (Y- f(x)) / f(x) = ε - 1 ≅ log(ε)
Log(ε)  ≈ ε -1 = (y - f(x))/f(x) by Taylor Series expansion

SEE in fit space should not be compared across different 
models

For example, comparing the SEEs between an additive model and a 
multiplicative model is meaningless and we should not select a model 
based upon the comparison between two fit measures

Log-error assumption can be applied to any functional 
forms

The choices between functional form and error term should be made 
independently of each other

MUPE method is suggested for modeling multiplicative 
error directly in unit space to avoid the use of correction 
factors
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The MUPE CER has zero proportional error for all points in the 
database (no sample bias)
The MUPE method requires no transformation and no 
correction factor adjustment
Goodness-of-fit measures (or asymptotic goodness-of-fit 
measures) can be applied to judge the quality of the model 
under the normality assumption
The MUPE CER produces consistent estimates of the 
parameters and the mean of the equation
The estimated parameters using the MUPE method are also the 
maximum likelihood estimates (MLE) of the parameters (by 
Goldberg, 2001)
It relies on nonlinear regression technique to derive a solution.
MUPE CERs do not always converge, especially with learning 
curves



6/20/2005 13

TECOLOTE
RESEARCH, INC.

TECOLOTE
RESEARCH, INC.

What Can We Do When MUPE 
Fails?

What Can We Do When MUPE 
Fails?

Resort to Log-Error CERs!
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Deriving the 
Log-Linear CER Correction Factor 

Deriving the 
Log-Linear CER Correction Factor 

At a given x value xo, if Y = eαxβ ε, where ε ~ LN(0, σ2), then

ln(Y / x = xo) = α + β ln(xo) + ln(ε) ~ N(α + βln(xo), σ2)
ln(Yhat / x = xo) = a + b ln(xo) ~ N(α + βln(xo), roσ2)
Yhat / (x = xo) = eaxo

b ~ LN(α + βln(xo), roσ2)

E(Yhat /x = xo) = eαxo
β e roσ2/2 = f(xo) e roσ2/2 

E(Y /x = xo) = eαxo
β eσ2/2 
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Net Correction Factor (NFC):

Downward bias (mean ~ median): eσ2/2

Upward bias (median): e roσ2/2

Goldberger’s Factor:

(p = total number of estimated coefficients)

E(GF) = NCF
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However, our regression analysis provides SEE rather than the true standard deviation 
(σ) in log space.  If we use SEE in NFC, we will overestimate the true value!
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Contrasting Goldberger
& PING Factors 

Contrasting Goldberger
& PING Factors 

Goldberger’s Factor:

A variable factor, which must be evaluated point by point
It can become very cumbersome with multiple drivers in the CER

To avoid evaluating ro point by point, we suggest using mean 
leverage value (p/n) to approximate ro: p/n ≈ ro

PING Factor:

A constant factor, which is used to adjust the level of the entire function
p = total number of estimated coefficients
n = sample size

Simple approximation sufficient for most cases: 
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Comparing Goldberger
and PING Factors

Comparing Goldberger
and PING Factors

Consider the Ratio
of GF to PF:

The PING Factor is sufficiently close to the theoretical 
unbiased Goldberger’s Factor within the data range. 
(p/n = E(ro) if xo is from the data matrix)

What if the prediction is made outside the database?
ro = ln(xo)(X’X)-1ln(xo)t (X =design matrix in log space)

(in one-independent variable model) 

The value of ro can be larger than one if it is evaluated outside 
the data range.  Goldberger’s factor is less than one in this 
situation.
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Compare Goldberger & 
PING When SEE = 0.5

Compare Goldberger & 
PING When SEE = 0.5
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            Data Range

While Goldberger’s 
method is theoretically 
correct, it generates 
suspiciously low
results outside the 
data range.

Goldberger & PING 
Factors match well 
within the data range
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Compare Goldberger & 
PING When SEE = 0.8

Compare Goldberger & 
PING When SEE = 0.8

Comparing a Log-Linear CER with the Goldberger and PING Factor Equations 
Using 0.8 as SEE in Log Space 
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Goldberger's Eq
y = a x b̂ * PF
y = a x b̂
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If SEE is 0.8, Goldberger’s 
method generates very 

suspiciously low results 
outside the data range (a 
5000 lb box is cheaper 
than a 3000 lb box?).
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Conclusions –
MUPE vs. Log-Error CERs?

Conclusions –
MUPE vs. Log-Error CERs?

Given the multiplicative model y = f(x)ε, the decision to 
develop a MUPE or a log-error CER should be based upon 
the error term assumption

Choose MUPE if you believe the error term (ε) distribution has a 
mean of one and variance of σ2

Choose log-error model if you believe ε follows a log-normal 
distribution with a mean of zero and variance σ2 in log space, i.e., 
ε ~ LN(0, σ2)

The choice of the CER functional form (linear, non-linear) 
should not drive the error term assumption (additive, 
multiplicative) and vice versa
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Conclusions –
Log-Error CERs Have Their Advantages

Conclusions –
Log-Error CERs Have Their Advantages

If the hypothesized equation is log-linear, e.g., y = axbε, 
then the regression can be done in log space linearly 
under the logarithmic transformation

This process is an OLS in log space and all the goodness-of-fit 
measures can be evaluated in that space
The above advantage does not exist if the CER has a non-linear 
functional form in unit space, which cannot be linearized in log 
space

SEEL ≅ CoV at a given x value
The standard error of estimate in log space (SEEL) can be 
regarded as the coefficient of variation (CoV) in unit space at a 
given x value.  (proof follows from a Taylor series expansion)

Log-errors (log(y) – log(f(x)) can be viewed approximately 
as the MUPE percentage error
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Conclusions – The Bad News 
About Using Log-Error CERs

Conclusions – The Bad News 
About Using Log-Error CERs

It involves a two-step process:
Perform the curve fitting in log space
Transform the results back to unit space

We need to derive a correction factor (by Goldberger’s 
method or the PING Factor) to adjust the unit space CER 
result to obtain an unbiased estimate
We must be extremely cautious when the future prediction 
lies outside the data range  

Goldberger’s Factor may generate counter intuitive results 
outside the data range, and this is more pronounced as SEE 
increases
The PING Factor may be more suitable than Goldberger’s Factor 
in this situation
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Conclusions –
Correction Factors 

Conclusions –
Correction Factors 

Goldberger’s Factor and the PING Factor generally match each 
other very closely within the data range.
Goldberger’s Factor is a variable factor, which must be evaluated 
point by point and multiplied to the log-error CER result to obtain 
the theoretical mean in unit space.

The PING Factor is a constant factor, which is used to adjust the 
level of the entire function.  For most cases: 
A common misuse of Goldberger’s Factor is to adjust the 
intercept, and then use it for the entire equation.  This practice 
generates an equation that underestimates the majority of the 
data points and should be avoided.
Goldberger’s Factor should be used with caution when 
predicting outside the data range because this factor may be 
considerably less than one.  The PING Factor may be more 
suitable in this situation.
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Two possible ways to perform the optimization for the 
weighted least squares using the predicted values

MPE high bias due to simultaneous minimization

MUPE bias  eliminated

where k is the iteration number
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