Objectives, Tendencies and Limitations

John Sandberg

Master Programmer, ACEIT

J oint ISPA/SCEA Conference, J une 12-15, 2007

\author{

- Los Angeles - Washington, D.C. - Boston - Chantilly - Huntsville - Dayton - Santa Barbara
 $■$ Albuquerque ■Colorado Springs ■ Columbus ■ Ft. Meade ■ Ft. Monmouth ■ Montgomery ■ Ogden ■ Patuxent River ■ Pensacola ■ San Diego
 ■ Charleston ■ Cleveland ■ Denver ■ New Orleans ■ Oklahoma City ■ Silver Spring ■ Warner Robins AFB ■ Vandenberg AFB
}

■ Overview
2-3 minutes

- What Is Cost Risk Allocation?

10-15 minutes

- Defining The Threat

10-15 minutes
■ Minimizing Average Budget Overrun 15-20 minutes

- Minimizing Budget Overrun Semi-Variance 20-30 minutes
- In Conclusion

2-3 minutes

What Is Cost Risk Allocation?

A Risk By Any Other Name

Cost Risk Allocation

A process by which costs of subordinate WBS elements are allotted such that they sum to the parent cost at the selected cost risk
(working definition)
Cost Risk Consequence
The average additional cost
suffered
(working definition)

Allocate

Cost Risk

The probability of incurring additional cost to the budget

Dictionary.com

To distribute according to a plan; allot
American Heritage Dictionary

Risk Dollars

Allocate Risk Dollars

To distribute risk dollars back to WBS elements (paraphrase of presentation title of S. Book)

The amount of funds needed to bring the TBE value up to a selected probability level

AFCAA CRH

- Point Estimate Has No Context on Its Own
- How precise is our model?
- How likely will we beat the P.E.?
- What elements drive the uncertainty?
- Cost Uncertainty Analysis...
- Quantifies precision of the model
- Identifies ranges of likely costs
- Reveals worrisome elements
- However, Uncertainty Doesn't Add Up
- Accountants don't like this fact
- Managers want an answer that they understand
- Hard to compare against execution progress
- Allocated Costs Add Up (just like P.E. and Mean)
- More statistically meaningful than point estimate
- But Beware
- Cost risk of elements will change if their cost changes - Allocated estimate loses context of model precision
- But What is a Good Cost Risk Allocation Method?
- It ultimately comes down to priorities

Cost $=\$ 10,235,329.88$
Cost $=\$ 10 \mathrm{~m}-\mathbf{\$ 1 2 m}$

Priority One

- First, Define What is Important: (may conflict)
- Minimizing overruns that may occur
- Reducing chance of a budget overrun
- Protecting important systems from failure
- Meeting schedule demands
- Identifying money flow problems
- Tracking well to EVM during execution
- Etc.

Proverb

Digging a hole in the right
place is more important than digging the hole right.

- Next, Figure Out What You Can Manage:
- Identifying and mitigating risk
- Holding funds in reserve
- Schedule and scope
- Etc.
- And What You Can't Manage:
- Due to legal issues (color of money)
- Due to bureaucracy (approval and reporting)
- Due to project inertia (contracts and penalties)
- Etc.
- Our Ultimate Goal Is Project Success
- A good start means better chance of success
- Helps our manager make informed decisions

■ Our Realistic Goal Is Getting WBS to Add

- For whatever reason...
> ... we must capture risk dollars in line items
> ... we cannot show a reserve line
- A Cost Risk Allocation Scheme...
- ...should reliably optimize what concerns us

Proverb

When all you own is a hammer everything looks like a nail.

■ Cost Risk Allocation Is a Limited Tool

- Fails to capture important issues that impact budget viability..

.... schedule risk, money flow, contract vehicle, risk mitigation, etc.Could our model capture these?	
The First Rule of Allocation	
Perform cost risk allocation only when the WBS	

- Ex: Allocate Air Vehicle for 25\% Cost Risk
- i.e., 75% probability of being under budget
- What is the "correct" way?
- Semantically correct as long as WBS adds up
- Compare four methods
- (bad) Subtract 5.4 from largest elements
- (bad) Subtract 1.8 from each element
- (good) Minimize average size of cost overrun
- (good) Minimize semi-variance (explained later)

Uncertainty Statistics	
WBS/CES	$\mathbf{7 5 . 0 \%}$
	$\begin{array}{c}\text { Total is } 5.4 \\ \text { less than sum } \\ \text { of children }\end{array}$
Air Vehicle	168.2
Design \& Dev.	34.7
Prototypes	18.6
Software	120.3

		Four Cost Risk Allocation Methods			
WBS/CES	Point Estimate	Subtract From Largest	Subtract 1.8 From Each	Average Overrun	Overrun Variance
Air Vehicle	$111.5(32 \%)$	$\mathbf{1 6 8 . 2 (7 5 \%)}$	$168.2(75 \%)$	$168.2(75 \%)$	$\mathbf{1 6 8 . 2 (7 5 \%)}$
Design \& Dev.	$25.0(25 \%)$	$34.7(75 \%)$	$32.9(67 \%)$	$34.0(72 \%)$	$29.9(54 \%)$
Prototypes	$9.7(20 \%)$	$18.6(75 \%)$	$16.8(66 \%)$	$18.1(72 \%)$	$14.6(54 \%)$
Software	$76.8(41 \%)$	$114.9(71 \%)$	$118.5(74 \%)$	$116.1(72 \%)$	$123.7(77 \%)$

Defining The Threat

An overrun may be a symptom of project illness

threat \propto overrun

The "Cost Camp"

- Do You Believe?
- Your level of angst increases as overrun increases
- Subsystems should meet their budget regardless of cost
- The percentage of overrun defines the threat of failure
- Allocation should be proportional to the cost risk
threat \propto overrun ${ }^{2}$

The "Variance Camp"

- Do You Believe?
- Your level of angst rapidly accelerates as overrun increases
- Less costly subsystems are less important to stay within budget
- The dollar amount of the overrun determines the threat of failure
- Allocation should be in proportion to the square of the cost risk

The risk of project failure encompasses more than a cost overrun

Proverb

Expenses grow to fill the budget.

Trip To The Mall

You give Ben and Alice each \$15 for a CD. How much change do you get back?

Ben paid $\$ 12$. Alice needs $\$ 2$ more.
 Did you overrun by $\$ 2$ or recover $\$ 1$?

A cost model reports that you get \$1 back. In our world, you need $\$ 2$ more to succeed.

Proposed Definitions

Proposed Definitions

Budget Overrun Semi-Variance (BOSV)

A measure of risk consequence using the squares of each potential cost risk consequence weighted by probability of occurrence
$B O S V=v^{2}=\int_{b u d g e t}^{\infty}(c-\text { budget })^{2} f(c) d u$

Where, c is a potential total cost $\boldsymbol{f}(\boldsymbol{c})$ is the element's PDF

Total Budget Overrun Semi-Variance (TBOSV)

A measure of risk consequence for a sum of elements including the impact of pairwise correlations among elements

Where,
$\boldsymbol{\rho}_{i, j}$ is the correlation between \boldsymbol{i} and \boldsymbol{j}
ρ represents a full correlation matrix BOSV is Budget Overrun Semi-Variance

Look familiar?
Analogous to variance.

Minimizing Average Cost Overrun

- Charts show simulation results for sum of skewed and sum of correlated elements
- The total budget was 2370 (77%-tile) \& 6945 (81%-tile) for respective charts, TABO in red
- The uncertainty levels of A, B were altered by increments of 5% and ABO plotted
- The uncertainty levels for C, D also displayed on X-axis for reference and ABO plotted
- The total average budget overrun was plotted for each pair of element confidence levels
- Result: Total average budget overrun was minimum when element confidences were equal

WBS	Distribution	Low	Mode	High	Allocated	Alloc \%-Tile
Total					2370	77%
Skew Left	Triangular	1000	2000	2000	1450	70%
Skew Right	Triangular	1000	1000	2000	920	70%

WBS	Distribution	Mean	CV	Allocated	Alloc \%-Tile
Total		4000		695	81%
A (Cor w/ B)	Normal	1000	0.2	2315	70%
B (Cor w/ A)	Normal	1000	0.2	1158	70%
C (Ind.)	Normal	1000	0.2	2315	70%
D (Ind.)	Normal	1000	0.2	1158	70%

Optimizing the "Cost Camp" Way...

■ When Allocating to Minimize the Total's Average Budget Overrun...

- ...everything is already captured in the uncertainty statistics...
- ...so don't worry about integrating additional measures into method

Minimal Total Average Budget Overrun

Allocate so that all elements receiving funds end up at the same confidence level.

- The Only Decisions to Make Are...
i.e. move money around WBS
- Where to allocate from - this should be where you can manage funds
- Where to allocate to - usually the lowest level WBS you are reporting
> Also reasonable to allocate to immediate children and work up the WBS
- How precise to be with uncertainty levels (why is explained later)
$>$ About $\pm 1 \%$ is fine - after that round and report

Allocation Destination

- Determine...
- ... WBS detail to report
- ... Where to allocate from
> i.e., where you manage funds
- ... Where to allocate to
> i.e., who is adjusted
Multi-Tier Allocation Options:
- 1) Allocate to lowest WBS
- And then sum up WBS
- \uparrow One step process is easier to implement
- $\quad \downarrow$ Mid-WBS values change if level of detail changes
- 2) Allocate down WBS
- Allocate from total to immediate children
- And then, allocate from child to its grandchildren, etc.
- \uparrow Keeps values consistent if report detail changes
- \downarrow More steps to perform

Total	850
R\&D	126
R	46
D	80
Prod	524
Non-Rec	128
Rec	456
O\&S	145
O	90
S	148

 Funds Managed

Adjusting Once for Tot. Ave. Budget Overrun:

(Easy to do and results close to optimal)

$$
\begin{aligned}
& \text { delta }^{\prime} \text { budget }_{\text {total }}-\sum_{i=1}^{n} \operatorname{cost}_{i} \\
& \text { budget }_{i}=\operatorname{cost}_{i}+\text { delta } \frac{\sigma_{i}}{\sum_{j=1}^{n} \sigma_{j}}
\end{aligned}
$$

Where,
budget $_{\text {total }}$ is the target cost for total for desired cost risk $\boldsymbol{c o s t}_{\boldsymbol{i}}$ is row \boldsymbol{i} 's cost with the same cost risk as $\boldsymbol{b u d g e t}_{\text {total }}$ delta is the amount to distribute among rows
budget $_{\boldsymbol{i}}$ is the new, adjusted cost for row \boldsymbol{i} after allocation σ_{i} is the standard deviation of row \boldsymbol{i}

Recursive Formula:

(For penny pinchers)

$$
\begin{aligned}
& \text { pct }_{0}=F_{T}\left(\text { budget }_{\text {total }}\right) \\
& \text { cost }_{r, i}=F_{r}^{-1}\left(\text { pct }_{i}\right) \\
& \text { delta }_{i}=\text { budget }_{\text {total }}-\sum_{r=1}^{n} \operatorname{cost}_{r, i} \\
& \text { budget }_{r, i+1}=\text { cost }_{r, i}+\frac{\text { delta }_{i} \sigma_{r}}{\sum_{j=1}^{n} \sigma_{j}} \\
& \text { pct }_{i+1}=\frac{1}{n} \sum_{r=1}^{n} F_{r}\left(\text { budget }_{r, i+1}\right)
\end{aligned}
$$

Where,
budget $_{\text {total }}$ is the desired total cost $\boldsymbol{p} \boldsymbol{c} \boldsymbol{t}_{\boldsymbol{i}}$ is percentile of the rows to sum delta $_{i}$ is the amount to distribute $\boldsymbol{c o s t}_{\boldsymbol{r}, \boldsymbol{i}}$ is the cost for row \boldsymbol{r} at $\boldsymbol{c o n f}_{\boldsymbol{i}}$ $\boldsymbol{\sigma}_{\boldsymbol{r}}$ is the standard deviation of row \boldsymbol{r} $\boldsymbol{F}_{r}(\boldsymbol{v})$ is the CDF for row \boldsymbol{r}
$\boldsymbol{F}_{\boldsymbol{T}}(\boldsymbol{v})$ is the CDF for the total
$\boldsymbol{F}_{\boldsymbol{r}}^{-1}(\boldsymbol{c})$ is the inverse CDF for row \boldsymbol{r}

Calculation Example When Allocating to Lowest Reported WBS Level:

- Step 1: Pick cost risk of 25% (75%-tile) $=\$ 608.94 \mathrm{M}$ (this assumes we manage funds at total)
- Step 2: Choose where to allocate to... 3rd level WBS elements (lowest reported level)
- Step 3: Calculate delta: Sum at @ 75\% = 625.98-budget = -17.04
- Step 4: Prorate delta for each element weighted by standard deviation (or TABO)
- Step 5: Determine confidence levels for each element's cost
- Step 6: If percentiles aren't close enough, use the weighted mean of the new levels as your next percentile, $\boldsymbol{p c t} \boldsymbol{t}_{i+1}$, and then return to step 3. (Twice through is sufficient)

WBS/CES	$\begin{aligned} & \text { 75\% } \\ & \text {-Tile } \end{aligned}$	Std Dev	Calculate Adjustment	Allocated	New \%-Tiles
Total (\$M)	\$608.94			\$608.94	75.0\%
Procurement	\$385.66			\$393.92	75.2\%
Manufacturing (Air Force)	\$272.67	\$ 68.80	-17 * $69 / 188=-6.24$	\$266.43	72.2\%
Ground Station LRIP Support	\$0.88	\$ 0.25	-17 * 0.25/188 = -0.02	\$0.86	72.7\%
Transportation (AF)	\$2.00	\$ 0.57	-17 * 0.57/188 = -0.05	\$1.95	72.7\%
Manufacturing (Army)	\$125.87	\$ 29.59	-17 * $29 / 188=-2.68$	\$123.19	72.2\%
Transportable Ground Stations	\$0.91	\$ 0.24	-17 * $0.24 / 188=-0.02$	\$0.89	72.5\%
Transportation (Army)	\$0.60	\$0.00	$-17 * 0 / 188=-0.00$	\$0.60	
Quality Control	\$10.78	\$ 4.27	$-17 * 4.3 / 188=-0.39$	\$10.39	72.7\%
SEPM	\$212.27	\$ 84.14	-17 * $84 / 188=-7.64$	\$204.63	72.5\%
SUM OF CHILDREN (\$M)	\$625.98	\$187.86	\$-17.04 to distribute	\$608.94	75.0\%

TABO Step Down

- Calculation Example when Stepping Down WBS:
- Step 1: Pick project budget = \$608.9M (75\% percentile)
- Step 2: Allocate budget for $1^{\text {st }}$ Level to $2^{\text {nd }}$ level WBS items (its immediate children)
> Step 2-1: Calculate delta \boldsymbol{I}_{1} : budget of $608.9-$ Sum at @ 75% of $616.6=-7.7$
> Step 2-2: Prorate delta ${ }_{\boldsymbol{I}}$ for each element weighted by standard deviation (or TABO)
> Step 2-3: If percentiles aren't close enough, use weight mean of percentiles and repeat step 2
- Step 3: Take allocated budget for each $2^{\text {nd }}$ level WBS element and allocate to $3^{\text {rd }}$ level > Repeat steps 2-1 through 2-3 for each $2^{\text {nd }}$ level budget $_{2}$, using budget $_{2}$ - sum of children @73.7\%
- Step 4: If report contains 4th+ level WBS, Repeat step 3 for elements @ each level

WBS/CES	$\begin{aligned} & \text { 75\% } \\ & \text {-Tile } \end{aligned}$	Std Dev	$2^{\text {nd }}$ Level WBS Adjustment	Apply to $2^{\text {nd }}$ Level	\%-Tiles	$3^{\text {nd }}$ Level WBS Adjustment	Allocated	\%-Tiles
Total (\$M)	\$608.9			\$608.9	75.0\%		\$608.9	75.0\%
Procurement	\$393.5	\$ 86.0	$-7.7 * 86 / 174=-3.8$	\$389.7	73.7\%		\$389.7	73.7\%
Manufacturing (AF)	\$272.7	\$ 68.8		\$269.8	73.7\%	$-8.9 * 69 / 99=-6.2$	\$263.6	71.0\%
Ground Station LRIP	\$0.88	\$ 0.3		\$0.87	73.7\%	$-8.9 * 0.3 / 99=-0.02$	\$0.85	71.4\%
Transportation (AF)	\$2.00	\$ 0.6		\$1.97	73.7\%	$-8.9 * 0.6 / 99=-0.05$	\$1.92	71.4\%
Manufacturing (Army)	\$125.9	\$ 29.6		\$124.5	73.7\%	$-8.9 * 30 / 99=-2.7$	\$121.8	71.0\%
Transportable Stations	\$0.91	\$ 0.2		\$0.90	73.7\%	$-8.9 * 0.2 / 99=-0.02$	\$0.88	71.4\%
Transportation (Army)	\$0.60	\$0.0		\$0.60			\$0.60	
Quality Control	\$10.8	\$ 4.3	$-7.7 * 4.3 / 174=-0.2$	\$10.6	74.1\%		\$10.6	74.1\%
SEPM	\$212.3	\$ 84.1	$-7.7 * 84 / 174=-3.7$	\$208.6	73.8\%		\$208.6	73.8\%
SUM OF CHILDREN (\$M)	\$616.6	\$174.4	Distribute \$-7.7	\$396.8	$\Sigma \sigma=99.5$	Distribute \$-8.9	\$608.9	75.0\%

Cost Risk Allocation To Lowest WBS Level

Cost Risk Allocation To Immediate Children

Allocated	\%-THles	Comparison of TABO Allocation Methods	Allocated	\%-Tiles
\$608.9	75.0\%	85.0\% Comparison of TABO Allocation Methods	\$608.94	75.0\%
\$389.7	75.2\%	ᄃ 82.5% - Allocate To Lowest Level	\$393.92	73.7\%
\$263.6	71.0\%		\$266.43	72.2\%
\$0.85	71.4\%	$\text { 宏 } 75.0 \%$	\$0.86	72.7\%
\$1.92	71.4\%	京 72.5%	\$1.95	72.7\%
\$121.8	71.0\%	¢ ${ }_{ \pm} 70.5 \%$	\$123.19	72.2\%
\$0.88	71.4\%	U. 65.0%	\$0.89	72.5\%
\$0.60		Q 62.5\%	\$0.60	
\$10.6	74.1\%		\$10.39	74.1\%
\$208.6	73.8\%	(s)	\$204.63	73.8\%

How Many Times Should We Iterate?
■ Once, usually; otherwise, twice

- Don't sweat the 0.001%-tile of confidence!
- Too much precision is misleading...

Proverb

To err is human, to measure it divine.

- If you allocate to the penny, it implies the estimate is very precise.
- Example: Guess the precision of these estimates: \$254,359.25 vs. \$250,000
- I humbly suggest that two values are essentially the same...
-at the $2^{\text {nd }}$ significant figure of standard deviation or 1% of confidence
- I humbly suggest that you round at the second digit of standard deviation*
- Example: Cost is $\$ \mathbf{2 3 5 9 . 2 5}$, σ is $\$ \underline{\mathbf{2 3}} 8.77 \ldots$ thus, report $\$ 2360$ with σ of $\$ \mathbf{2 4 0}$
- Or round at first digit of the difference between values 1% confidence apart
- Example: Cost is $\$ \mathbf{2 6 8 . 3 6}$ @ 73%-tile and $\$ \mathbf{2 6 5 . 9 5}$ @ 72\%-tile... > ...difference is $\mathbf{2} .38 \ldots$ thus, report cost @73\%-tile as $\$ 268$
- Rounding at these positions retains an extra digit of padding for precision

My Suggestion for Rounding

Round to the $2^{\text {nd }}$ digit of the deviation after all intermediate calculations are complete.

Minimizing Overrun
 Semi-Variance

- Total Budget Overrun Semi-Variance Is Tough to Visualize
- The charts below compare "Average" vs. "Semi-Variance"
- "average overrun" progresses linearly as mean increases
- "overrun variance" progresses at a rate of R^{2} as overrun increases

Optimizing the "Variance Camp" Way...

- Elements with large risk consequence have disproportionate importance
- Argument goes that we should protect them
- Since we are dealing with variance, we must take correlation into account
- Behavior of Optimal Solution
- A budget, \boldsymbol{B}, such that the total budget overrun semi-variance (TBOSV), $\boldsymbol{v}_{\text {total }}^{2}$, is minimal.
- All things being equal, we would want equal $\boldsymbol{v}_{\boldsymbol{k}}$
- Desired BOSV decreases as element's correlation to other elements increases
- The method begins to resemble "cost camp" method as more and more correlations increase

Unfortunately...

- The Optimal Solution is Not Viable
- Elements with small BOSV could move dramatically-potentially outside valid bounds
- Tough math to solve, too.
- How to Stay Within Distribution Bounds?

- Put limits on elements' ranges of movement
- Or, we can "anchor" our solution to something
> Larger variances move further from "anchor"
> Smaller variances remain near "anchor"

■ "Allocating risk dollars back to WBS elements*" - a.k.a. the "Needs" Method

- Offers a scheme for the "Variance Camp" to reduce budget overrun semi-variance when allocating
- It uses PE as an "anchor" and distributes "risk dollars" to elements

Where,
\boldsymbol{C} is the probability level of the total budget
$\boldsymbol{b}_{\boldsymbol{k}}$ is the allocated cost (budget line)
$\boldsymbol{p} \boldsymbol{e}_{\boldsymbol{k}}$ is the initial estimate for element \boldsymbol{k}
$\operatorname{Risk} \boldsymbol{\$}=\boldsymbol{F}_{\boldsymbol{T}}{ }^{-1}(\boldsymbol{C})-\boldsymbol{p} \boldsymbol{e}_{\boldsymbol{T}}$ is the total "at-risk" money to distribute
$\boldsymbol{N e e d}_{\boldsymbol{k}}=\boldsymbol{F}_{\boldsymbol{k}}^{-1}(\boldsymbol{C})-\boldsymbol{p e} \boldsymbol{e}_{\boldsymbol{k}}$ when $\boldsymbol{F}_{\boldsymbol{k}}\left(\boldsymbol{p} \boldsymbol{e}_{k}\right)<\boldsymbol{C}$; otherwise $\boldsymbol{N e e d}_{\boldsymbol{k}}=\mathbf{0}$
$\rho_{i j}$ is the correlation of elements \boldsymbol{i} and \boldsymbol{j} (full correlation matrix)
$\boldsymbol{F}^{-1}(\boldsymbol{C})$ is inverse distribution function (returns cost at \%-tile \boldsymbol{C})

- Issues with "Needs":
- Less risky (left skew) rows are subsidized, harming budgets for more risky (right skew) rows
- Undo burden to rows with Need >0 which can potentially send small items below their 0%-tile
- Need is analogous to semi-variance, yet an element's Need changes when cost risk changes
- At higher cost risk, costs lose their "bolstering" from associations with elements with Need=0
- Method does not produce a solution at higher cost risk, when all elements' Need=0
- The problem is with what is being minimized

[^0]- Why is the equation " Need $_{k}=0$ " so troublesome?
- In "Needs," only measures the range between PE and target percentile
- Ignores cost risk above the target percentile (thus most of the budget's cost risk)
- In fact, an element's measure of contribution could go away completely
- As long as our "anchor" doesn't move neither should our element's contribution

The "New Needs" Method...

- Apply Two Alterations
- Replace fluctuating Need with a constant measure, \boldsymbol{v}
- Do not set Need (v) to zero
- Standard Deviation, $\boldsymbol{\sigma}$, Is Weak Measure of \boldsymbol{v} Since It Is a Symmetrical Measure*
- We want to estimate the BOSV, which lies to the right of the target budget
- $\boldsymbol{\sigma}$ underestimates the consequence for elements whose distributions are skewed to the right
- For v^{2}, I recommend Using Positive Semi-Variance (PSV), σ_{+}^{2}
- It is a constant measure that takes distribution skew into account \& offers a rough BOSV metric
- There are a number of ways to estimate PSV if you cannot calculate it directly

$$
\begin{aligned}
& b_{k}=\operatorname{anchor}_{k}+\operatorname{delta} \frac{\sum_{j=1}^{n} \rho_{k, j} v_{k} v_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{i, j} v_{i} v_{j}} \\
& v=\sigma_{+, k}=\sqrt{C_{k} \sum_{i=1}^{s}\left(x_{i}-\mu_{k}\right)^{2}}, \text { for } x_{i}>\mu_{k} \\
& \text { where, } \\
& \boldsymbol{b}_{\boldsymbol{k}} \text { is the allocated cost (budget line) } \\
& \boldsymbol{a n c h o r}_{\boldsymbol{k}} \text { is anchor point for element } \boldsymbol{k} \\
& \text { delta is the amount to distribute among elements } \\
& \sigma_{+, k} \text { is the square root of the PSV } \\
& \boldsymbol{\rho}_{i, j} \text { is the (full) correlation of elements } \boldsymbol{i} \text { and } \boldsymbol{j} \\
& \text { where, } \\
& \boldsymbol{x}_{\boldsymbol{i}, \boldsymbol{k}} \text { is a point in element } \boldsymbol{k} \text { 's random variable, } \boldsymbol{X}_{\boldsymbol{k}} \\
& \boldsymbol{s} \text { is the number of data points in } \boldsymbol{X} \\
& \boldsymbol{c}_{\boldsymbol{k}} \text { is the confidence level of the mean, } \boldsymbol{\mu}_{\boldsymbol{k}}
\end{aligned}
$$

* Detailed in "Allocating Risk Dollars Back to WBS Elements" Presentation, Stephen A. Book ${ }^{[4]}$

Six element example model with correlation*

Example Session						
WBS/CES	Pt. Est.	PE \%-tile	Mean	Std Dev	95\%-tile	Semi-Variance
Air Vehicle	$\$ 333,396$	15%	$\$ 411,798$	$\$ 74,435$	$\$ 545,604$	
Payload	$\$ 11,416$	14%	$\$ 14,590$	$\$ 3,006$	$\$ 19,962$	$7,214,596$
Propulsion	$\$ 16,271$	17%	$\$ 20,496$	$\$ 4,499$	$\$ 28,744$	$17,007,376$
Airframe	$\$ 112,250$	49%	$\$ 116,277$	$\$ 26,776$	$\$ 165,003$	$593,555,769$
Guidance	$\$ 186,979$	15%	$\$ 251,304$	$\$ 61,745$	$\$ 366,670$	$3,327,328,489$
IAT\&C	$\$ 6,480$	9%	$\$ 9,130$	$\$ 2,163$	$\$ 13,198$	$4,137,156$

Correlation Matrix					
WBS/CES	Payload	Propulsion	Airframe	Guidance	I, A, T \& C
Payload	1	0.32	0.32	0.21	0.33
Propulsion	0.32	1	0.25	0.17	0.15
Airframe	0.32	0.25	1	0.19	0.12
Guidance	0.21	0.17	0.19	1	0.18
I, A, T \& C	0.33	0.15	0.12	0.18	1

We can estimate the semi-variance using a simple formula:

$$
\sigma_{+}^{2} \approx \frac{(h i g h-\mu)^{2}}{4} \approx \frac{\left(\text { cost }_{95 \%}-\mu\right)^{2}}{4}
$$

* "Air Vehicle Production Sub-WBS From AFCAA CRH Example ${ }^{[5]}$
- Comparison of Resulting Percentiles After Allocation Performed
- Chart shows "New Needs" offers more stability than "Old Needs"
- Anchoring at the mean offers "symmetry" for allocating at low and high percentiles

$$
\underline{\text { Scenario uses mean (} \mu \text {) as anchor: }} \text { delta }=\text { budget }_{T}-\mu_{T}
$$

- Alternate Comparison of Resulting Percentiles After Allocation
- "New Needs" supports alternatives to anchor and delta to suite your priorities
- Some prefer to use point estimate instead of mean. The total's $\boldsymbol{p} \boldsymbol{e}_{\boldsymbol{T}}$ is at 14%-tile.
- We find the $\boldsymbol{\operatorname { c o s t }}_{\boldsymbol{i}}$ for each element at 14%-tile and use their sum them for to calc. delta

Minimization Performance

The ultimate goal of the "Variance Camp" is to minimize TBOSV

- The chart below compares the TBOSV for "Old" and "New" methods
- The "New Needs" method is using the P.E. \%-tile scenario from previous slide.
- The new method outperforms the old for low confidences
- At high confidences, they are virtually identical

Conclusion

- Cost Risk allocation is a tool that serves a specific purpose
- Be sure that allocation serves your analysis goals
- Only allocate when you have to encapsulate all money in WBS
- Always allocate from where funds are managed
- Allocate up or down the WBS
- Two useful allocation methods were presented
- Consider the two camps of thought when picking a method
- How to minimize the total average budget overrun (TABO)
- How to (nearly) reduce the total budget overrun semi-variance (TBOSV)
> Introduction to a more reliable "New Needs" method to replace old one
- Round to stress the (lack of) precision of your numbers
- Be wary when discussing confidence levels after allocation
- This is a huge topic on its own!

Questions?

Contact Information
John Sandberg
ACEIT Master Programmer
Tecolote Research, Inc.
5266 Hollister Ave., Ste 301
Santa Barbara, CA 93109
Work: (805) 964-6963 x133
Fax: (805) 964-7329
isandberg@tecolote.com

References

References:

[1] Information on the meanings of accuracy and precision:
http://en.wikipedia.org/wiki/Accuracy and precision
http://en.wikipedia.org/wiki/Significance arithmetic\#Uncertainty and error
[2] Examples of rounding at $2^{\text {nd }}$ decimal of deviation:
http://physics.nist.gov/cuu/Constants/
Description of Semi-Variance
[3] "Selected Semi-Variance Estimators of Underreporting NonFarm Sole Proprietor Income," ChihChin Ho, Internal Revenue Service, IRC1996_028
http://www.amstat.org/sections/srms/proceedings/papers/1996 028.pdf
Detailed description of the "Needs" method and model
[4] "Allocating Risk Dollars Back to WBS Elements" Stephen A. Book, Chief Technical Officer, MCR,
LLC SSCAG/EACE/SCAF Meeting 19-21 September 2006, also presented at SCEA Conference June 2006, DoDCAS Symposium February 2007
Additional information on uncertainty analysis and time-phased cost risk allocation
[5] "AFCAA Cost Risk Handbook" Alfred Smith et. al., CR-1254-3, 9 April
[6] "'Need’ Needs Kneading" John Sandberg, Tecolote Research, Inc., presented at SSCAG Meeting
17 Jan 2007

Helpful Formulae

Here are general ways of calculating budget semi-variance, \boldsymbol{v}^{2}
If you substitute $\boldsymbol{\mu}$ for $\boldsymbol{p e}$, you get the positive semi-variance, $\boldsymbol{\sigma}_{+}{ }^{2}$

$$
v^{2}=c \sum_{i=1}^{s}\left(x_{i}-p e\right)^{2}, \text { for } x_{i}>p e
$$

where, \boldsymbol{x} is a point in X,
\boldsymbol{t} is the \# of points in X , and \boldsymbol{c} is the prob. of overrun

Rough Estimates For Arbitrary Forms

$v^{2}=\frac{c}{4}(h-p e)^{2}$

$$
v^{2}=\frac{c}{5}\left(h_{95 \%}-p e\right)^{2}
$$

For Uniform Distributions

$$
v^{2}=\frac{c}{3}(h-p e)^{2}
$$

For Symmetrical Distribution Forms and pe $=\mu$

$$
v^{2}=\frac{\sigma^{2}}{2}
$$

For Triangular Distributions with $p \geq$ Mode

$$
v^{2}=\frac{c}{6}(h-p e)^{2}
$$

For Triangular Distributions with $p<$ Mode $v^{2}=\frac{(m-p e)^{4}}{6(h-l)^{2}}+\frac{2(m-c)^{3}(c-l)}{3(h-l)^{2} \frac{l}{l}}$
$+\left(\frac{h-m}{h-l}\right)\left[\frac{(h-m)^{2}}{2}+\frac{4(m-c)(h-m)}{3}+(m-c)^{2}\right]^{\boldsymbol{m}} \quad \boldsymbol{h}$

Probability Functions

Cumulative density for triangular
$1-c=F(x)= \begin{cases}0, & x<l \\ \frac{(x-l)^{2}}{(\operatorname{mode}-l)(h-l)}, & l \leq x<\text { mode } \\ 1-\frac{(h-x)^{2}}{(h-\text { mode })(h-l)}, & \text { mode } \leq x \leq h \\ 1, & x>h\end{cases}$
Inverse CDF for triangular
$F^{-1}(p)= \begin{cases}l+\sqrt{p(\text { mode }-l)(h-l)}, & p<F(\text { mode }) \\ h-\sqrt{(1-p)(h-\operatorname{mode})(h-l)}, & F(\text { mode }) \leq p\end{cases}$

Probability density for triangular
$f(x)= \begin{cases}0, & x<l \\ \frac{2(x-l)}{(\operatorname{mode}-l)(h-l)}, & l \leq x<\operatorname{mode} \\ \frac{2(h-x)}{(h-\operatorname{mode})(h-l)}, & \text { mode } \leq x \leq h \\ 0, & x>h\end{cases}$

Mean and variance for triangular

$$
\begin{aligned}
& \mu=\frac{(l+\text { mode }+h)}{3} \\
& \sigma^{2}=\frac{(\text { mode }-l)(\text { mode }-h)+(h-l)^{2}}{18}
\end{aligned}
$$

Cumulative density for uniform

$$
1-c=F(x)= \begin{cases}0, & x<l \\ \frac{(x-l)}{(h-l)}, & l \leq x \leq h \\ 1, & x>h\end{cases}
$$

Inverse CDF for uniform

$$
F^{-1}(p)=l+p(h-l)
$$

Probability density for uniform

$$
f(x)= \begin{cases}0, & x<l \\ \frac{1}{(h-l)}, & l \leq x \leq h \\ 0, & x>h\end{cases}
$$

Mean and variance for uniform

$$
\mu=\frac{(l+h)}{3} \quad \sigma^{2}=\frac{(h-l)^{2}}{12}
$$

Tecolote

Research, Inc.

Derivations for Estimates

$$
v^{2}=\int_{0}^{w}(x+n)^{2}\left(\frac{2 x}{w^{2}}\right) d x
$$

 "cost-distance-squared" of displaced triangle

$$
v^{2}=\frac{2}{w^{2}} \int_{0}^{w}\left[x^{3}+2 n x^{2}+n^{2} x\right] d x
$$

$$
v^{2}=\frac{2}{w^{2}}\left(\frac{w^{4}}{4}+\frac{2 n w^{3}}{3}+\frac{n^{2} w^{2}}{2}\right)
$$

$$
v^{2}=\frac{w^{2}}{2}+\frac{4 n w}{3}+n^{2}
$$

$$
\begin{aligned}
& v^{2}=\int_{0}^{w}(x+n)^{2}\left(\frac{1}{w}\right) d x \\
& v^{2}=\frac{1}{w} \int_{0}^{w}\left(x^{2}+2 n x+n^{2}\right) d x \\
& v^{2}=\frac{1}{w}\left(\frac{1}{3} w^{3}+n w^{2}+n^{2} w\right) \boldsymbol{1} \boldsymbol{c o s t} \text { displaced rectangle }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\begin{array}{c}
\text { "cost-distance-squared" } \\
\text { of displaced triangle }
\end{array}}{\boldsymbol{n}} \begin{array}{l}
\boldsymbol{n} \boldsymbol{x}+\boldsymbol{n}) \\
v^{2}=\int_{0}^{w}(x+n)^{2}\left(\frac{2(w-x)}{w^{2}}\right) d x \\
v^{2}=\frac{2}{w^{2}} \int_{0}^{w}\left[\left(x^{2}+2 n x+n^{2}\right)(w-x)\right] d x \\
v^{2}=\frac{2}{w^{2}} \int_{0}^{w}\left[w x^{2}-x^{3}+2 n w x-2 n x^{2}+n^{2} w-n^{2} x\right] d x \\
v^{2}=\frac{2}{w^{3}}\left(\frac{w^{4}}{3}-\frac{w^{4}}{4}+n w^{3}-\frac{2 n w^{3}}{3}+n^{2} w^{2}-\frac{n^{2} w^{2}}{2}\right) \\
v=2\left[w^{2}\left(\frac{1}{3}-\frac{1}{4}\right)+w\left(n-\frac{2 n}{3}\right)+\left(n^{2}-\frac{n^{2}}{2}\right)\right] \\
v^{2}=\frac{w^{2}}{6}+\frac{2 n w}{3}+n^{2}
\end{array}, l
\end{aligned}
$$

Derivations for Estimates

G
e
Rough estimate for curve tapering down (fat tail)
$v^{2}=$ area $_{1} v_{1}^{2}+$ area $_{2} v_{2}^{2}$
$v^{2}=\frac{2}{3}\left(\frac{(w / 2)^{2}}{3}\right)+\frac{1}{3}\left(\frac{(w / 2)^{2}}{3}+(w / 2)(w / 2)+(w / 2)^{2}\right)$
$v^{2}=w^{2}\left(\frac{2}{4(9)}+\frac{1}{4(9)}+\frac{1}{12}+\frac{1}{12}\right)=w^{2} \frac{9}{36}$
$v^{2}=\frac{w^{2}}{4}$

$$
\begin{aligned}
& v^{2}=\text { area }_{1} v_{1}^{2}+\text { area }_{2} v_{2}^{2}+\text { area }_{3} v_{3}^{2} \\
& \begin{aligned}
v^{2}= & \frac{9}{13}\left(\frac{(w / 3)^{2}}{6}\right)+\frac{3}{13}\left(\frac{(w / 3)^{2}}{6}+\frac{2}{3}(w / 3)(w / 3)+(w / 3)^{2}\right) \\
& \quad+\frac{1}{13}\left(\frac{(w / 3)^{2}}{6}+\frac{2}{3}(w / 3)(2 w / 3)+(2 w / 3)^{2}\right) \\
v^{2}= & \frac{w^{2}}{13}\left(\frac{9(9)}{6(9)}+\frac{3}{6(9)}+\frac{6}{3(9)}+\frac{3}{9}+\frac{1}{6(9)}+\frac{4}{3(9)}+\frac{4}{9}\right)=w^{2} \frac{147}{13(54)} \\
v^{2}= & \frac{49}{234} w^{2} \approx \frac{w^{2}}{5}
\end{aligned}
\end{aligned}
$$

Rough estimate for curve tapering up (thin tail)

[^0]: * From "Allocating Risk Dollars Back to WBS Elements" Presentation, Stephen A. Book ${ }^{[4]}$

