

Automated Cost Estimating Integrated Tools

Presenting Your Estimate Results

For ACEIT User Workshop

19 Sep 2012 Jennifer Kirchhoffer

Tecolote Research, Inc.

Copyright © Tecolote Research, Inc. June 2012

- What Makes a Successful Management Review Presentation?
- GAO Guidance on Cost Estimate Presentations
- Preparation for Building the Presentation
- Building the Management Presentation
- Conclusions

What is a Management Review?

- The last of a series of reviews held by various levels of management
- **Conducted at a high level of analysis** (usually does not involve the details of the estimate)
- Estimate validation is a key element of the management reviews
- Includes analysis of uncertainty in the estimate
 - Clearly and concisely explains the probabilistic nature of the estimate
 - Explains how recommended contingency and escalation amounts were developed
 - Explains the cost and uncertainty drivers
 - Explains the cost distribution/ranges
 - It is then up to management to determine the level of risk (and contingency) they are willing to accept

Many times management will ask questions concerning alternative scopes or designs

- Management will always be questioning the overall cost of the project and will probe to determine if there are lower cost options
- Always come prepared with:
 - > Any earlier design/cost alternatives
 - Knowledge of potential process improvements or technical alternatives
 - > The decision tree leading to the selected design

The effectiveness of an estimate review relies on:

- The information that is presented
- The manner in which it is presented

SUCCESS in the Management Review is:

Getting the <u>Approval</u> *for your* <u>Estimate</u>

Characteristics of An Effective Management Presentation:

Targeted at the Decision Maker

- Tailored to the PM's decision style and preference for details/data
- Keeps the interest of the Decision Maker
- Attempt to have buy-in from all PM influencers prior to briefing
 - Know who the detractors will be and come prepared to defend your position

Focused on the Purpose of the Presentation

- Focus discussion (debate) on input values and methodologies not cost results!!!
- Guide the decision maker to focus on top cost and variance drivers
 - > You are the navigator on this trip

Clear and Concise Message

Thoroughly covers key elements of estimate

Includes Results of Robust Sensitivity and Uncertainty Analysis

 Analyst's knowledge of estimate sensitivity will aid negotiation and identification of areas where requirement changes and alternative approaches can drive cost reductions

Planning is the most important step in creating a successful presentation of any kind

GAO Cost Guide Ch. 17

- Cost Estimate Briefing to Management should cover the documented LCCE with an explanation of the program's technical and program baseline
 - 1. Title Page
 - 2. Top Level Outline
 - 3. Estimate's Purpose why it was developed and what approval is needed
 - 4. Brief Program Overview
 - Physical Characteristics
 - Performance Characteristics
 - Acquisition Strategy
 - 5. Ground Rules and Assumptions (GRA&As)
 - 6. Estimate (time phased in constant-year dollars and tracked to previous estimate)
 - 7. Methodology/Estimating Process. For each WBS cost element show:
 - Estimating Method for cost drivers and high value items
 - Breakout of the total cost elements and their percentage of the total cost estimate to identify key cost drivers
 - 8. Sensitivity Analysis

GAO Cost Guide - Cont'd

9. Risk and Uncertainty Analysis Discussion

- Cost Drivers
- Magnitude of outside influences
- Contingencies
- Confidence Interval surrounding the point estimate and corresponding S-curve
- Other historic data for reality checks
- How Uncertainty, Bounds, and Distributions were defined
- **10.** Comparison to an independent cost estimate (ICE) explain differences
- 11. Comparison of estimate (in current-year dollars) to funding profile
 - Include Contingency reserve based on risk analysis
 - Identify budget shortfalls and impacts
- **12. Discussion of other concerns or challenges**
- **13. Conclusions and recommendations**

Approval for the estimate (as-is or with modifications) should be sought at Conclusion!

Preparation for Building the Management Presentation

Before Preparing the Presentation

Get to know your estimate

Perform analysis prior to building any charts

- Develop the plan for how you will focus decision maker on most important elements, inputs, and methodologies in your estimate
- Build robust POST/Excel file with your data analysis
- Use all the analytical tools available in ACE and POST

ACE Charts

POST Charts

Example File: 07 - Detailed LCC Estimate

ACE Session Review

- LCC Estimate for an Unmanned Air Vehicle
 - > 361 row ACE estimate
 - 90 WBS elements
 - 110 input variables
 - > LCC covers FY2008 FY2030

> 4 ACE Cases and 4 POST Cases

			Delta to Pt
Case	Sensitive Inputs	Input Range	Estimate
Point Estimate	Baseline: reflects technical baseline		
Lower Propulsion Cost Scenario	Propulsion Unit Cost	Reduced from 495 2003\$K to 450 2005\$K	(\$31,297.9)
$\neg \uparrow \vdash \neg \vdash \cup \vdash \cup$	Budget start	Moved from 2012 to 2014 and decreased by \$30K	
New 3010 Budget and AF Buy Quantities	AF Buy Quantity LRIP and FRP starts	Moved to 2017 start	\$7,742.5
Ground Station Mods	Ground Station Software Labor Hours	Reduced from 15,000 to 10,000	(\$9,323.8)
14-11-11	Op Life, operational parameters, and continuing system		
New OM Plan (POST)	improvement	Increased from 10 to 11 years, varaiables increased	\$29,751.4
Closer to Budget (POST)	Learning curve slope	Reduced from 90% to 85%	(\$89,129.3)
	and the second second	Reduced Contractor Staff from 30 to 15 and	
Staffing Cut (POST)	Contractor Staff and Government Staff	Government Staff from 30 to 20	(\$14,355.8)
70% Probability Estimate (POST)	Risk Adjusted: 70% Probability Estimate Allocated at WBS Lvl 2		\$110,233.6

- Summaries by Phase/Appn/Service
- > Budgets loaded in Session
- > Cost Metrics (risk adjusted and no adjustment)

Pareto Chart

- Pareto Chart: identifies WBS elements that contribute the most to the target row <u>total</u>
- Rank orders children of the selected WBS row from largest to smallest
- Best Practices
 - TY\$
 - Review Baseline and Allocated Risk Case
- Use to prioritize methodology and GR&A focus

10/2/2012

Key Tools for Analyzing Sensitivity and Uncertainty Impacts

Tornado/Spider Chart: identifies the input variables that most influence the target row <u>total</u>

Variance Analysis Chart (rollup & driver): identifies the defined distributions that contribute the most to the target row <u>uncertainty</u>

10/2/2012

Tornado Chart

- Displays the impact of changing selected variables that drive the total result of a selected row
- Longer bars mean larger impact
- Drivers can be a mix of Rollup and Input rows (Restrict to Input Variables when analyzing GR&As)
- Use fixed range for initial sensitivity analysis on technical baseline
 - Fixed Range Tornado only show results of varying inputs by a fixed range. This is unlikely to be a valid assumption. Adjust your analysis accordingly!!!
- Use risk range to evaluate uncertainty parameters
- Exclude drivers that are will not vary by selected levels (+/- 5%). Test other ranges or use spider chart to view impacts at different ranges

		Tar	get Row Resu	ılts	Fixe	ed Range Inpu	ıts	
Drivers (exlcuding Rollup)	Row	Delta	-5%	+5%	Point Estimat	-5%	+5%	
Software Labor Rate	239	\$2,980.478	\$91,616.946	\$94,597.424	\$1.109	\$1.053	\$1.	
Ground Station S/W Labor Hours	238	\$2,666.211	\$91,774.080	\$94,440.291	15000	14250	15750	each variable by
IOT&E Factor	247	\$1,648.008	\$92,283.181	\$93,931.189	0.45	0.43	0.47	+/- 5% and
Basic Structure T1	228	\$1,074.243	\$92,570.064	\$93,644.307	\$1,512.204	\$1,436.593	\$1,587.814	manura the offect
Ground Station Complexity Factor	241	\$1,073.804	\$92,570.283	\$93,644.087	1.25	1.19	1.31	measure the effect
Ratio of N/R Costs to T1 for Structure	248	\$845.622	\$92,684.375	\$93,529.996	3.500	3.325	3.675	on the target row
NREC Development - Propulsion Complexity Factor	249	\$397.686	\$92,908.342	\$93,306.028	0.35	0.33	0.37	
Air Vehicle S/W Labor Hours	232	\$314.267	\$92,950.052	\$93,264.319	17500	16625	18375	
Ground Station Unit Cost	240	\$170.418	\$93,021.976	\$93,192.394	\$533.379	\$506.710	\$560.048	
Number of Ground Stations	242	\$170.418	\$93,021.976	\$93,192.394	2	2	2	

Copyright © Tecolote Research, Inc. Jan 2012

POST Spider Chart

- Similar to the Tornado chart, plots the impact of changing selected variables that drive the total result of the target row
- Plots results at user specified intervals, between the end points, to plot the driver sensitivity trend
- Useful to identify linear, non-linear, step and trend reversals (if there are any)

the second se													
		Target Row Results						Fixed Range Inputs					
Drivers (exlcuding Rollup)	Row	Delta	-20%	-10%	0%	+10%	+20%	Point Estimate	-20%	-10%	0%	+10%	+20%
Software Labor Rate	236	\$11,921.912	\$87,146.229	\$90,126.707	\$93,107.185	\$96,087.663	\$99,068.141	\$1.109	\$0.887	\$0.998	\$1.109	\$1.219	\$1.330
Ground Station S/W Labor Hours	235	\$10,664.845	\$87,774.763	\$90,440.974	\$93,107.185	\$95,773.396	\$98,439.608	15000	12000	13500	15000	16500	18000
IOT&E Factor	244	\$6,592.031	\$89,811.170	\$91,459.178	\$93,107.185	\$94,755.193	\$96,403.201	0.45	0.36	0.41	0.45	0.50	0.54
Basic Structure T1	225	\$4,296.974	\$90,958.698	\$92,032.942	\$93,107.185	\$94,181.429	\$95,255.672	\$1,512.204	\$1,209.763	\$1,360.983	\$1,512.204	\$1,663.424	\$1,814.644
Ground Station Complexity Factor	238	\$4,295.216	\$90,959.577	\$92,033.381	\$93,107.185	\$94,180.989	\$95,254.793	1.25	1.00	1.13	1.25	1.38	1.50

Copyright © Tecolote Research, Inc. Jan 2012

Finding Key Contributors to Total Uncertainty

- Uncertainty distributions are assigned to
 - Cost method
 - Cost method inputs
- The objective of a "Variance Analysis" is to find the most important contributors to the Total uncertainty
- POST allows you to quickly examine different types:
 - WBS Rollup: Find <u>WBS elements</u> that contribute the most to total uncertainty (cost contributors)
 - All Drivers: Find <u>distributions</u> anywhere in the model (methods or inputs) that contribute the most to total uncertainty
 - Some Drivers: Consider a <u>specific subset of distributions</u> in the model
 - For instance, examine only those distributions assigned to input variables (cost drivers)
 - Similar to a Tornado analysis targeting input variables (this can be a source of further confusion)

Variance Analysis Chart

Review session closely to

Production and O&S input variables show up in the

report due to correlation with the uncertainty on the

RDT&E WBS element.

Problem - Outputs based

uncertainty specification

None of the RDT&E input

variables have uncertainty

for RDT&E

definitions

I only included input

Identifies top contributors to the uncertainty of a selected target row

10/2/2012

Copyright © Tecolote Research, Inc. Jan 2012

Building the Management Presentation for Example File 07 – RDT&E Phase

Management Presentation

- Purpose & Scope of Estimate/Program Review
 - Team Composition
 - Estimate Schedule
 - **System Description**
- 2. 3. 4. 5. 6. 7. 8. 9. Analogous Systems & Crosschecks Ground Rules & Assumptions
- Estimating Methodologies
- Uncertainty Analysis
- Estimate Results and Comparison to Budget
- 10. Sensitivity Analysis
- Source: ACEIT **Issues (Concerns or Challenges)**
 - **Request for Approval** 12.

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. **6.** Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks **Ground Rules & Assumptions** 7. **Estimating Methodologies Uncertainty Analysis** 8. Estimate Results and Comparison to Budget 9. 10. Sensitivity Analysis 11. Issues (Concerns or Challenges) **Request for Approval** 12.

GAO Guide Ch 9. Ground Rules & Assumptions

Ground Rules

Ground rules represent a common set of agreed on estimating standards that provide guidance and minimize conflicts in definitions. When conditions are directed, they become the ground rules by which the team will conduct the estimate. The technical baseline requirements represent cost estimate ground rules.

Assumptions

Without firm ground rules, the analyst is responsible for making assumptions that allow the estimate to proceed. In other words, assumptions are required only where no ground rules have been provided. Assumptions represent a set of judgments about past, present, or future conditions postulated as true in the absence of positive proof. The analyst must ensure that assumptions are not arbitrary, that they are founded on expert judgments rendered by experienced program and technical personnel.

Impacts of Changing Ground Rules and Assumptions

Once the risk uncertainty and sensitivity analyses are complete, the cost estimator should formally convey the results of changing assumptions to management as early and as far up the line as possible. The estimator should also document all assumptions to help management understand the conditions the estimate was based on. When possible, the analyst should request an updated technical baseline in which the new assumptions have been incorporated as ground rules.

Source: GAO Cost Estimating and Assessment Guide (Ch 9), March 2009

Ground Rules and Assumptions

Where to find GR&A's in your ACE session

Inputs

- Schedule/Milestone Dates
- Fechnical Inputs
- Factors
- > Analogous Costs or Technical Parameters
- File Properties
 - Inflation Indices
 - Base Year
- Work Breakdown Structure

Focus Review on the GR&As with biggest impact on Estimate

 Use POST to Perform Sensitivity and Uncertainty Analysis to identify top cost and uncertainty drivers (do not add these charts into presentation – use as backup for discussion)

Technical Inputs

- Organize by Program Phase
- Focus on inputs that have the biggest impacts in sensitivity analyses or have defined distributions that contribute most to target row uncertainty

GR&AS should lay the foundation for where you want to focus the PM's attention during Review!

Example: Ground Rules and Assumptions

RDTE Ground Rules and Assumptions

 Software Labor Rates: TY\$ hourly rates (based on forward pricing rates for Contractor X on Program D)

NNN -	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016
Software Labor Rate	\$95	\$100	\$105	\$112	\$120	\$130	\$142	\$155	\$170

- Software Labor Hrs: Air Vehicle = 17,500 and Ground Station = 15,000 (from CARD)
- IOT&E Factor: .45 factor (applied to air vehicle and ground station development cost) (Analyst judgment)
- Basic Structure T1\$ = \$1,512K (Program D Structure T1\$)
- Ground Station Complexity Factor = 1.25. Factor applied to analogous cost of Designing New Parts on Program Z (Engineering Judgment)

US Government Inflation Indices 2012

- Appropriations:
 - ➢ AF − 3010, 3080, 3400, 3500, 3600
 - Army 2010, 2020, 2031, 2040
- Base Year 2012

Schedule

- Did you use the MS Project Plug-in? Is estimate linked to schedule?
- Has a schedule risk assessment been performed?
- Can you explain which elements in your estimate are duration sensitive?

🖻 Σ Total

E RDT&E

Example 1: Work Breakdown Structure*

RDT&E Review Focus

* Source: Input All Form WBS hierarchy

E Procurement

🗄 Σ SEPM

- Σ Manufacturing (Air Force)
 - Σ Air Vehicle (AF)

ie-Σ Concept Refinement Σ Technology Development

- 🔸 Integration & Test (AF)

Σ Prototype Manufacturing

Other Government Costs

🛓 Σ System Test & Eval

Σ Industrial Facilities

- Ground Station LRIP Suppor
- Transportation (AF)
- 🔸 Initial Operational Test & Ev
- 🔸 Initial Spares & Repair Parts
- $\doteq \Sigma$ Manufacturing (Army)
 - Σ Air Vehicle (Army)
 - 🔶 Air Vehicle Integration (Army
 - Σ Transportable Ground Static
 - Transportation (Army)
 - 🔸 Initial Operational Test & Ev
 - 📀 Initial Spares & Repair Parts
 - Quality Control
 - SEPM
 - Program Office Costs
- Σ Operations & Support
 - ie Σ Unit-Level Manpower
 - Σ Unit Operations
 - Σ Maintenance
 - Σ Sustaining Support
 - Σ Continuing System Improvement

Example 2: Work Breakdown Structure*

Total RDT&E 1.0 1.1 **Concept Refinement** 1.1.1 Contractor A Contractor B 1.1.2 **Technology Development** 1.2 1.2.1 Contractor A 1.2.2 Contractor B System Development and Demonstration 1.3 1.3.1 **Development Engineering** 1.3.1.1 Air Vehicle .3.1.1.1 **Basic Structure** 1.3.1.1.2 Navigation/Guidance L.3.1.1.3 Propulsion .3.1.1.4 Software L.3.1.2 Ground Station 1.3.1.2.1 Procure OTS Parts 1.3.1.2.2 **Design New Parts** L.3.1.2.3 Software 1.3.1.3 Int & Assy 1.3.2 Prototype Manufacturing Air Vehicle L.3.2.1 1.3.2.2 **Mobile Ground Station** 1.3.3 SEPM 1.3.3.1 Contactor SEPM 1.3.3.2 Government SEPM 1.3.4 System Test & Eval ..3.4.1 DT&E .3.4.2 IOT&E ..3.4.3 **Test Facilities** 1.3.5 **Industrial Facilities** Construct/Convers/Expans 1.3.5.1 1.3.5.2 Equip ACQ/Modern 1.3.6 Other Government Costs

2.0	Procurement
2.1	Manufacturing (Air Force)
2.1.1	Air Vehicle (AF)
2.1.1.1	Basic Structure (AF)
2.1.1.2	Navigation/Guidance (AF)
2.1.1.3	Propulsion (AF)
2.1.2	Integration & Test (AF)
2.1.3	Ground Station LRIP Support (AF)
2.1.4	Transportation (AF)
2.1.5	Initial Operational Test & Eval (AF)
2.1.6	Initial Spares & Repair Parts (AF)
2.2	Manufacturing (Army)
2.2.1	Air Vehicle (Army)
2.2.1.1	Basic Structure (Army)
2.2.1.2	Navigation/Guidance (Army)
2.2.1.3	Propulsion (Army)
2.2.2	Air Vehicle Integration (Army)
2.2.3	Transportable Ground Stations (Army)
2.2.3.1	Ground Station Hardware (Army)
2.2.3.2	Transportable Vehicle (Army)
2.2.3.3	Vehicle Ruggedization (Army)
2.2.3.4	Integration & Test (Army)
2.2.4	Transportation (Army)
2.2.5	Initial Operational Test & Eval (Army)
2.2.6	Initial Spares & Repair Parts (Army)
2.3	Quality Control
2.4	SEPM
2.5	Program Office Costs
16	

* Source: WBS workscreen report

3.0	Operations & Support
3.1	Unit-Level Manpower
3.1.1	Operations
3.1.1.1	Airforce Ops
3.1.1.1.1	Officers
3.1.1.1.2	Enlisted
3.1.1.1.3	Civilians
3.1.1.2	Army Ops
3.2	Unit Operations
3.2.1	Operating Material (AF)
3.2.1.1	Basic Structure (AF)
3.2.1.2	Navigation/Guidance
3.2.1.3	Propulsion
3.2.2	Operating Material (Army)
3.2.2.1	Basic Structure (Army)
3.2.2.2	Navigation/Guidance
3.2.2.3	Propulsion
3.2.3	Support Services
3.3	Maintenance
3.3.1	Organizational Maintenance
3.3.2	Intermediate Maintenance
3.3.3	Depot Maintenance
3.4	Sustaining Support
3.4.1	H/W Maintenance
3.4.2	S/W Maintenance
3.4.3	SEPM
3.5	Continuing System Improvements
3.5.1	Hardware Modifications/Modernization
3.5.2	Software Maintenance & Modifications

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. 6. **7.** Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks Ground Rules & Assumptions **Estimating Methodologies** 8. Uncertainty Analysis Estimate Results and Comparison to Budget 9. 10. Sensitivity Analysis 11 Issues (Concerns or Challenges) **Request for Approval** 12.

Estimating Methodologies and Results

- Determine whether your decision maker is detail oriented or more of a big picture style decision maker
- Need to balance decision makers preferred style with time available for presentation and review

3 Approaches

- Detailed: Show methodologies, inputs, uncertainty, and results for each element in detail
 - > This approach combines Methodology and Uncertainty Reviews
- Summary of Methodologies: Provide methodology qualitative description only and draw attention to larger cost passengers
 - Do not review \$ results until after you have presented the Uncertainty Analysis Section
- Hybrid Approach: Combination of Detailed and Summary Approach
 Cover methodologies and inputs for all elements of the estimate

Example 1: Detailed Methodologies

1.3.1.1.2 RDT&E Air Vehicle Development Engineering Navigation Guidance

70% CL estimate (allocated) = \$1,476.9 TY\$K Point Estimate = \$1,431.4 TY\$K

Methodology: Parametric: 425.555 + 25.555 * Navigation Guidance Weight (1994 \$K)

Inputs: Navigation Guidance Weight (lbs)= 25

Source: CER developed in 1994 based on 10 Military, NASA and commercial unmanned satellite programs.

Navigation Guidance Weight is a ground rule documented in the CARD

Time Phasing: 60/40 beta curve covering duration of Development (2009-2013)

70%CL TY\$K (allocated)

WBS	Total	2008	2	.009	2010	2011	2012	2013
Navigation/Guidance	\$ 1,476.9		\$	60.5	\$ 752.5	\$ 540.0	\$ 123.4	\$ 0.5

Cost Risk Methodology: CER Uncertainty – Normal Distribution CV=.22

Based on CER objective Data

Notice: I reported the allocated 70%CL estimate, but my PDF is for the statistical results. Be prepared to discuss what the difference is between those two. *Why do you think I am using the allocated results?*

Example 2: Methodology Summary

- Concept Refinement Budget constrained TY throughput
- Technology Development Analogy to Program X

Development Engineering

- > Air Vehicle
 - Basic Structure is analogy to Program D
 - Navigation/Guidance is weight based CER
 - Propulsion is analogy to Program Y with a complexity adjustment
 - Software is buildup based on hour estimate from Engineer Q
- Ground Station
 - Off the Shelf Parts is analogy to Program Z

- Animations, font sizes and colors used to draw attention to larger cost elements
- Purpose of this slide is to get buy in to general methodology approach
- No Numbers on this slide
- Analogous Programs should be reviewed prior to this slide
- New Parts are analogy to Program Z with complexity adjustment (Engineering Judgment)
 Software: Buildup based on projected SW Labor Rates (Hourly) from Contractor X forward pricing rates and total hour estimate from Engineer Q
- Integration & Assembly Factor based on analogy to Program C applied to Air Vehicle and Ground Station Development cost
- Prototype Manufacturing Factors for Air Vehicle and Mobile ground Station (from command level handbook) applied to T1\$
- Systems Engineering/Program Management Buildup: Contractor and Government Average rates time average staff projection (Engineering Judgment)

System Test & Evaluation

- > DT&E is Analogy to Program Z
- IOT&E Factor (Analyst judgment) applied to air vehicle and ground station development cost
- > Test Facilities is Analogy to Program Z

Industrial Facilities

Construction/Convers/Expans is Analogy to Program Z

- Equip ACQ/Modern Factor (analyst judgment) applied to Construction Cost
- Other Government Costs TY Throughput based on available budget

Example 3: Hybrid Methodology Review

RDT&E			Meth.		
TY\$	WBS#	Element	Туре	Description	Source Data
					Program Z Industrial facilities costs
16.5%	1.3.5.1	Construct/Conver/Expan	Analogy	Program Z	reported in SAR (dtd Dec06)
				Factor x (Air vehicle	
16.0%	1.3.4.2	IOT&E	Factor	development cost + Ground	Factor is based on analyst judgment
					Hour Estimate from Engineer Q and rates
					fromForward Pricing Rates for Contractor X
15.8%	1.3.1.2.3	GS Software	Buildup	Hours x Rate	on Program D
					Program Z DT&E costs reported in SAR (dtd
11.4%	1.3.4.1	DT&E	Analogy	Program Z	Dec06)
					Nonrecurring Program Z Design Cost from CCDR (dtd
6.5%	1.3.1.2.2	Design New Parts	Analogy	Program Z with complexity adjustment	2Apr04) and Complexity Factor from Engineer A
	1 I L	111111		Factor x (Air vehicle development cost +	Factor Developed from Analysis of Program C CPR (dtd
5.4%	1.3.1.3	Int & Assy	Factor	Ground station development cost)	Oct2007)
		11146		Structure T1 cost from Program D times	Program D CCDR for Structure T1\$ (dtd 05Feb03), Ratio of
5.0%	1.3.1.1.1	Basic Structure	Analogy	Ratio of N/R Costs to T1 for Structure	N/R Costs to Structure T1 from ABC Factors List
4.8%	1.3.5.2	Equip ACQ/Modern	Factor	Factor x Contruct/Convers/Expans Cost	Factor is based on analyst judgment
			1-1-1	Assume Technology development	Verbal provided by Program B Financial Manager
4.2%	1.2	Technology Development	Analogy	equivalent tp that of Program B	(12Nov11)
4.1%	1.3.2	Prototype Manufacturing	Factor	Factor x (Air vehicle development cost + Ground station development cost)	Factors from Command Level Handbook

Prioritized based on pareto chart Purpose of this slide is to get buy in to general methodology approach

Clearly identifies importance, methodology and source data

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. 6. 7. Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks **Ground Rules & Assumptions** Estimating Methodologies 8. **Uncertainty Analysis** 9. **Estimate Results and Comparison to Budget** 10. Sensitivity Analysis 11 Issues (Concerns or Challenges) 12. Request for Approval

Uncertainty Analysis

Make Sure the Reviewer Understands what Uncertainty is

- Sources of Uncertainty
 - Estimating methodologies
 - Input Variables (technical, cost, schedule, factors, etc.)
 - Correlation
 - Discrete Risks
- Where and How Uncertainty is Defined in your Model
 - Variance Analysis Chart Can Help you Identify Locations and Impacts of Uncertainty
- Uncertainty Analysis Results
 - > CDF S Curves (with CV specified)
- Risk Charts to Include in Briefing
 - Risk Approach
 - Risk Review
 - Risk Results

Analyst review of Variance Analysis Chart

- WBS Rollup and relative contribution to RDT&E total uncertainty
 - RDT&E Input Variables did have uncertainty on them
- I would not include this chart in the briefing
 - Use it to determine where to focus the decision maker's attention on uncertainty

Example: Risk Approach

RDT&E Uncertainty

- Objective uncertainty on cost estimating relationships
- Subjective assessment on analogy and factor uncertainty
- Cost inputs consistent with most likely
- 3 Distribution Shapes in RDT&E Uncertainty

Example: Risk Review

WBS/CES Description	Point Estimate	70% Estimate	Equation / Throughput	RI\$K Specification
RDT&E	\$93,316.131	\$104,059.552		
System Development and Demonstration	\$87,790.847	\$98,732.923		
Development Engineering	\$40,895.551	\$41,092.729		
Air Vehicle	\$11,198.275	\$11,183.692		
Navigation/Guidance	\$1,456.794	\$1,476.940	425.555 + 25.555 * PCDWT	Normal, PE=Mean, CV=0.22
Propulsion	\$2,489.100	\$2,568.911	6000 * NREC_Prop_Cplx%	Normal, PE=Mean, High*=135, High%=85
Ground Station	\$24,363.074	\$24,280.378		
Design New Parts	\$6,667.233	\$6,799.049	4500 * Complex	Normal, PE=Mode, Spread=Low
Int & Assy	\$5,334.202	\$5,628.658	.15 * (AV\$.FYTOT + GS\$.FYTOT)	Normal, PE=Mode, Spread=Medium
Prototype Manufacturing	\$3,829.371	\$4,311.742		
Air Vehicle	\$3,432.671	\$3,752.183	1.5 * AV_T1\$	Normal, PE=Mean, CV=0.25
Mobile Ground Station	\$396.700	\$559.559	1.75 * TGS_T1\$	Normal, PE=Mean, CV=0.3
System Test & Eval	\$25,840.480	\$28,849.661		
DT&E	\$9,482.287	\$11,860.164	8000	Triangular, PE=Mode, Spread=Medium, Skew=Right
IOT&E	\$16,002.607	\$16,619.388	TestFact * (AV\$.FYTOT + GS\$.FYTOT)	
Test Facilities	\$355.586	\$370.110	[Cost Throughput]	Normal, PE=Mean, CV=0.15
Industrial Facilities	\$15,408.716	\$22,134.602		
Construct/Convers/Expans	\$11,852.859	\$17,136.028	10000	Uniform, PE=Mode, Spread=High, Skew=Right
Equip ACQ/Modern	\$3,555.858	\$4,998.574	.3 * Const\$	Normal, PE=Mode, Spread=Medium

Top Contributors to RDT&E Uncertainty

Copyright © Tecolote Research, Inc. June 2012

Example: Risk Results

Copyright © Tecolote Research, Inc. June 2012

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. 6. 7. Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks Ground Rules & Assumptions Estimating Methodologies 8. Uncertainty Analysis 9. **Estimate Results and Comparison to Budget** 10. Sensitivity Analysis Issues (Concerns or Challenges) 11. 12. Request for Approval

Example: Detailed Estimate

	Funding in TY \$K	Point Estimate	70% Estimate	RISK \$	
	RDT&E	\$93,107.185	\$104,059.552	\$10,952.367	
	Concept Refinement	\$1,000.000	\$1,000.000		
	Contractor A	\$500.000	\$500.000		
	Contractor B	\$500.000	\$500.000		
	Technology Development	\$4,326.630	\$4,326.630		
	Contractor A	\$2,158.348	\$2,158.348		
	Contractor B	\$2,168.281	\$2,168.281		
	System Development and Demonstration	\$87,780.556	\$98,732.923	\$10,952.367	
	Development Engineering	\$40,527.525	\$41,092.729	\$565.205	
	Air Vehicle	\$11,015.058	\$11,183.692	\$168.635	
1	Basic Structure	\$5,200.593	\$5,200.593		
1	Navigation/Guidance	\$1,431.439	\$1,476.940	\$45.501	
١	Propulsion	\$2,445.778	\$2,568.911	\$123.133	
	Software	\$1,937.248	\$1,937.248	\$0.000	
	Ground Station	\$24,118.260	\$24,280.378	\$162.118	
l	Procure OTS Parts	\$1,047.999	\$1,047.999		
١	Design New Parts	\$6,636.931	\$6,799.049	\$162.118	
	Software	\$16,433.330	\$16,433.330		
	Int & Assy	\$5,394.207	\$5,628.658	\$234.452	
	Prototype Manufacturing	\$3,862.430	\$4,311.742	\$449.312	
	Air Vehicle	\$3,459.781	\$3,752.183	\$292.401	
l	Mobile Ground Station	\$402.649	\$559.559	\$156.910	
١	SEPM	\$24.394	\$24.394		
	Contactor SEPM	\$11.400	\$11.400		
	Government SEPM	\$12.993	\$12.993		
	System Test & Eval	\$26,300.612	\$28,849.661	\$2,549.049	
	DT&E	\$9,461.264	\$11,860.164	\$2,398.899	
	IOT&E (now done with LRIP articles per DoDI 5000.2.	\$16,480.077	\$16,619.388	\$139.310	
	Test Facilities	\$359.271	\$370.110	\$10.840	
	Industrial Facilities	\$15,315.595	\$22,134.602	\$6,819.007	
	Construct/Convers/Expans	\$11,781.227	\$17,136.028	\$5,354.801	
	Equip ACQ/Modern (Govt Owned/leased)	\$3,534.368	\$4,998.574	\$1,464.206	
١	Other Government Costs	\$1,750.000	\$2,319.795	\$569.795	

Copyright © Tecolote Research, Inc. June 2012

Example: RDT&E 70% Estimate vs. Budget

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. 6. 7. Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks **Ground Rules & Assumptions Estimating Methodologies** 8. **Uncertainty Analysis** 9. Estimate Results and Comparison to Budget **10. Sensitivity Analysis Issues (Concerns or Challenges)** 11. 12. Request for Approval

Sensitivity Analysis

- If the presentation is planned properly, sensitivity will be addressed during the GR&A's, methodologies, and uncertainties
 - Present sensitivity as a standalone only if you think you will be unable to convey the results of sensitivity analysis while covering other areas
 - Prepare charts and have them available in backup to support discussion
 - Tornado
 - Spider
 - Analysis of Variance
 - Pareto

These charts were introduced in slides 12-18

Example Estimate Review

Purpose & Scope of Estimate/Program Review 2. 3. 4. 5. 6. 7. Team Composition Estimate Schedule **System Description** Analogous Systems & Crosschecks **Ground Rules & Assumptions** Estimating Methodologies 8. **Uncertainty Analysis** 9. Estimate Results and Comparison to Budget 10. Sensitivity Analysis Issues (Concerns or Challenges) 11. **12. Request for Approval**

Request for Approval

- This is the most important step
- Focus "negotiation" on adjusting technical parameters and not results
- Try to avoid decision maker directives like "Make changes and then come back and show me the results"

Conclusion

- There is no magic formula to the management review presentation. Prepare the following and you will increase your chance of success:
 - Presentation Targeted to the Decision Maker
 - Presentation Focused on Driving Your Key Points
 - Clear and Concise Message
 - Thoroughly cover the key elements of estimate
 - Utilize Results of Robust Sensitivity and Uncertainty Analysis to Prepare and Negotiate your Estimate

Key ACEIT Features that can be leveraged

- Case Management for Sensitivity Analysis
- Input All Form WBS Hierarchy
- ACE Reports: Workscreen Reports
- Time Phased Reports, Sand Charts, Pareto, Comparative
- Risk and Analytic Charts
 - > Analysis Charts: Tornado, Spider. Variance Analysis

Planning is the most important step in creating and delivering a successful Management Review.

QUESTIONS ???