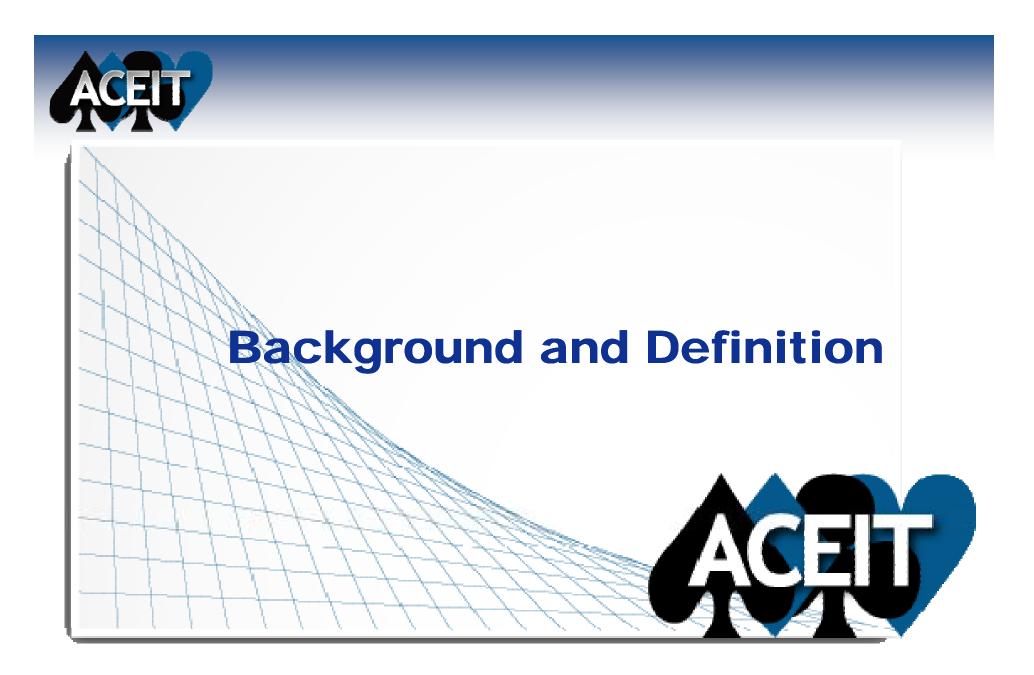


Automated Cost Estimating Integrated Jools

Using Unitized Uncertainty Distributions in ACEIT

ACEIT Users Workshop February 1-2, 2010 Jeff McDowell



Pending: Approved for Public Release

- Background and Definition
- Simple Example Exercise
- Refined Definition
- Catalog
- Expanded Exercise
- Best Practices
- Summary

Challenge

- There is an ever-present desire for generalpurpose distributions to apply to WBS elements by commodity.
- Ongoing research sponsored by the Air Force Cost Analysis Agency will meet this need.
- Product will consist of a metrics manual of unitized distributions organized by commodity and WBS.

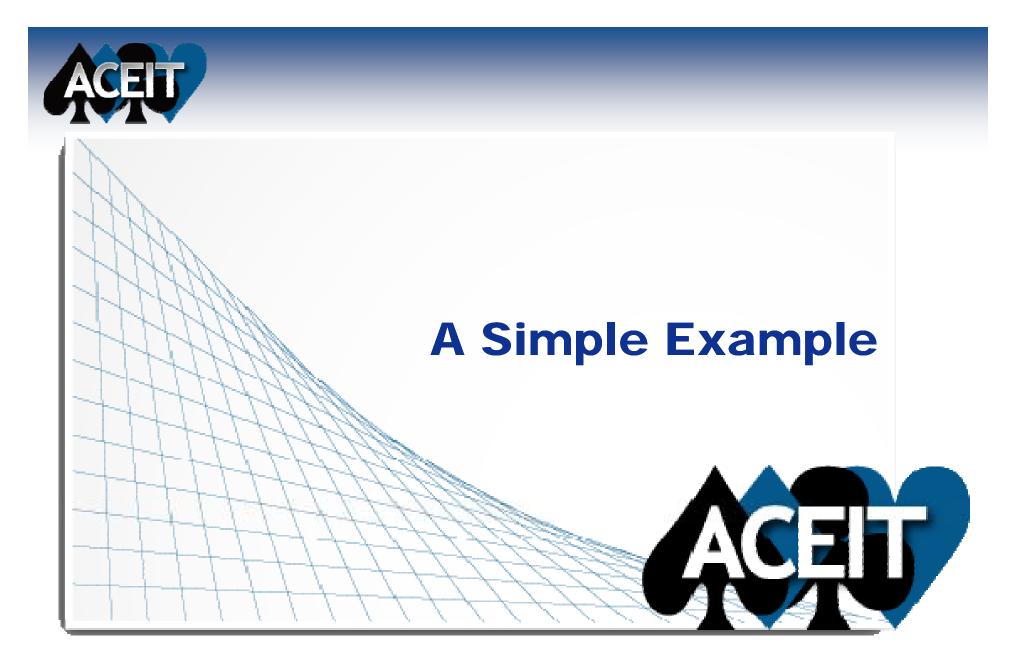
Uncertainty Modeling Algebraically

Given:

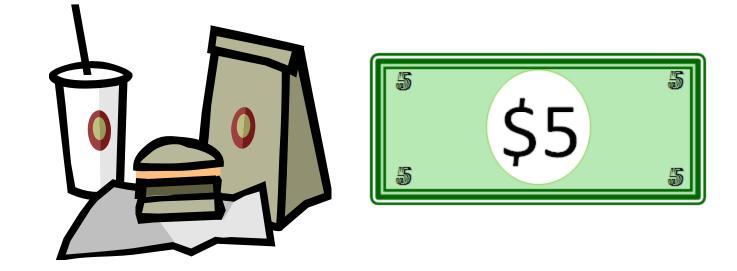
Cost Element Point Estimate = Your Methodology

Its uncertainty can then be expressed:

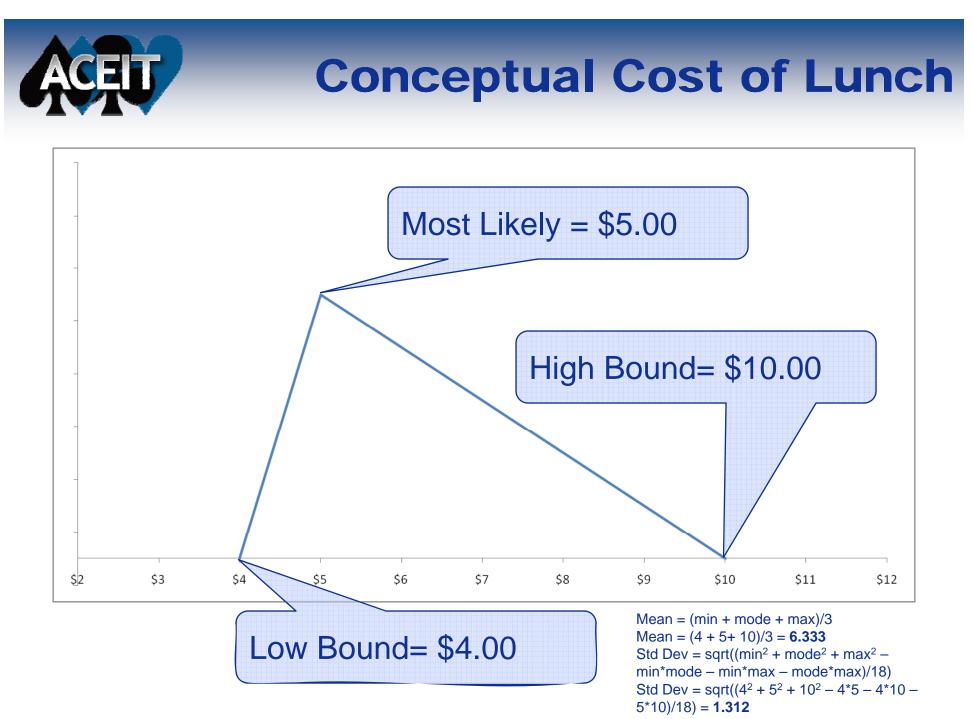
Cost Element _{Uncertainty} = f(Your Methodology, Distribution Shape, Distribution Parameters)


Situation-specific

Not Reusable


Unitized Distribution: Short Definition

A distribution with a center value of one.



Exercise: Estimate the Cost of Lunch

Algebraic Cost of Lunch

Given:

Lunch_{Point Estimate} = 5.00

Its uncertainty can then be expressed: Lunch_{Uncertainty} = *f*(Triangular, Low=4.00, ML=5.00, High=10.00)

Modeled Cost of Lunch

💟 AC	ACE 7.2 - [Unitized ACEIT Workshop 1.aceit - RI\$K All Columns (BY2010\$)]												
: 💌 <u>-</u>	<u>File E</u> dit <u>V</u> iew <u>D</u> ocumentation <u>C</u> alc Ca	<u>i</u> ses <u>R</u> eports <u>T</u> oc	ols <u>W</u> indow <u>H</u> e	lp									
10	😂 🖵 😤 🕘 📐 🐰 🗈 🕰 🛷 😻	이 (이 1 🔤 🎫 1)	@ % % (*]	📲 100% 💽 💂 🕴 Arial		• 10 • <u>A</u> • 🕭 •	В <i>I</i> <u>U</u>	1 🐜 📮 🛙 RI\$					
29	• 🗾 📠 🚠							77 - 28					
	Unitized ACEITlumns (BY2010\$)												
	WBS/CES Description	Unique ID	Point Estimate	Equation / Throughput	Distribution Form	PE Position in Distribution	Low (Value)	High (Value)					
14	*Meals Estimate	*Estimate						Ĩ					
15	Lunch		5.000 (29%) *	5	Triangular	Mode	4	10					
16													
17	*INPUT VARIABLES	*IN_VAR											
18													

All well and good, but:

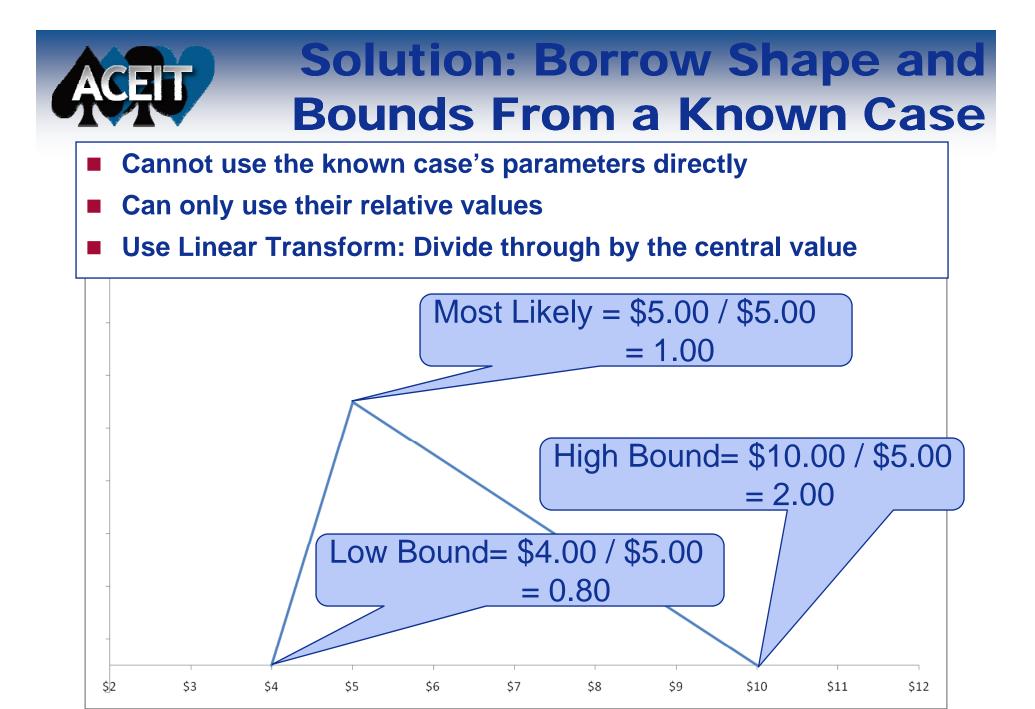
- Situation-specific
- Not Reusable

New Exercises

Estimate the Cost of Breakfast

Estimate the Cost of Dinner

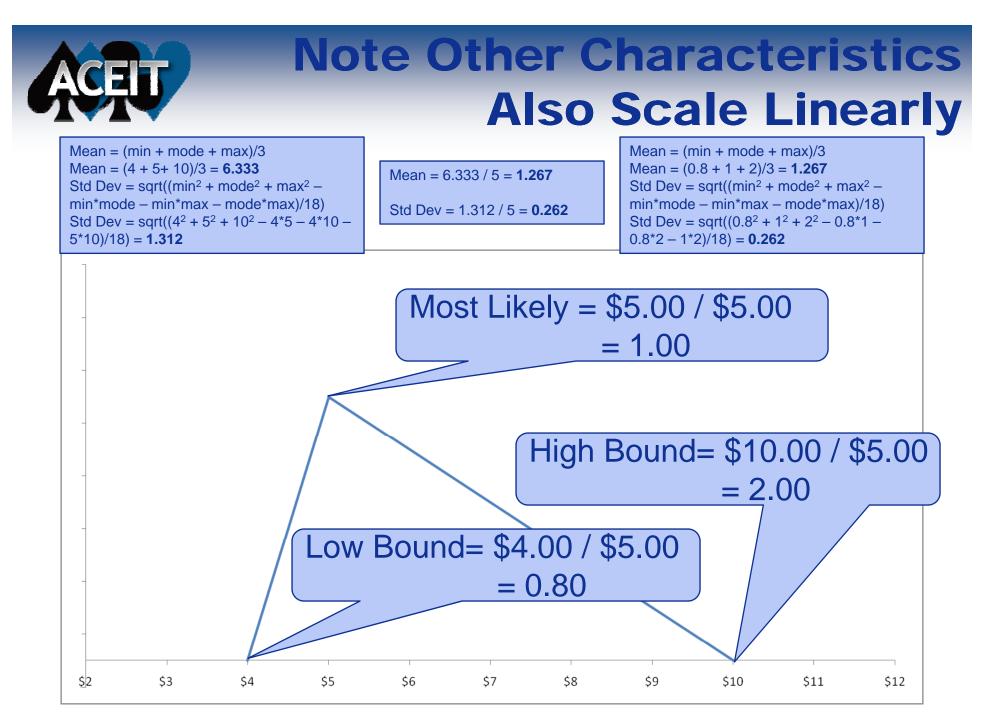
Algebraic Cost of Breakfast and Dinner


Given:

Breakfast_{Point Estimate} = 4.00 Dinner_{Point Estimate} = 15.00

Insufficient information to express their uncertainty:


Breakfast_{Uncertainty} = *f*(PE=4, Shape Unknown, Bounds Unknown)


Dinner_{Uncertainty} = *f*(PE=15, Shape Unknown, Bounds Unknown)

Unitized Distribution

Algebraic Cost of Breakfast and Dinner

Given:

Breakfast_{Point Estimate} = 4.00 Lunch_{Point Estimate} = 5.00 Dinner_{Point Estimate} = 15.00

Using Unitized Distributions to express uncertainty: Breakfast_{Uncertainty} = (PE=4) * Triangular (0.80, 1.00, 2.00) Lunch_{Uncertainty} = (PE=5) * Triangular (0.80, 1.00, 2.00) Dinner_{Uncertainty} = (PE=15) * Triangular (0.80, 1.00, 2.00)

Modeled Cost of Meals

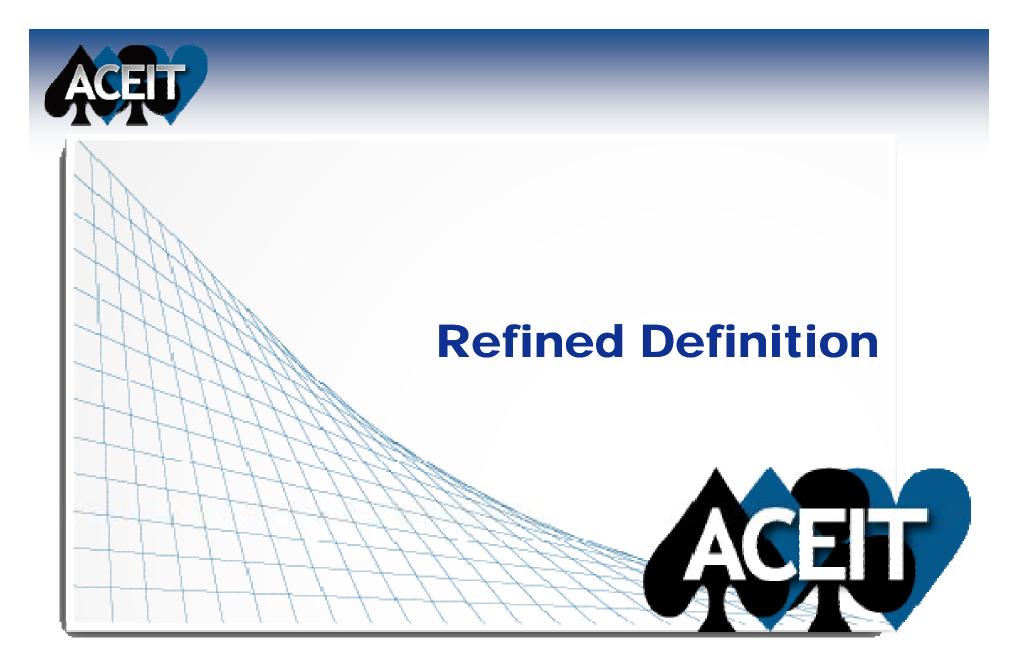
	ACE 7.2 - [Unitized ACEIT Workshop 3.aceit - RI\$K All Columns (BY2010\$)]												
1	🗄 🖤 Eile Edit View Documentation Calc Cases Reports Tools Window Help												
10	i 🗋 💕 🚽 🚰 🦂 🔌 🐇 🗈 🏝 🖋 🐝 🤊 🗠 📴 冰 🛷 🏷 📲 📲 100% 🔹 🥃 i Arial 🔹 🔹 🗛 - 🖄 - 🖪 🗷 💆 i 👪 💂 i RI‡K All Columns 🔹 🖃 🏭 🗐												
32													
	V Unitized ACEIT lumns (BY2010\$)												
		WBS/CES Description	Unique ID	Point Estimate	Equation / Throughput	Distribution Form	PE Position in Distribution	Low (% of PE)	Mode (% of PE)	High (% of PE)	Low (Value)	High (Value)	
1	4	*Meals Estimate	*Estimate										
1	5	One Day's Meals		24.000 (15%) *									
1	6	Breakfast		4.000 (28%) *	4	Triangular	Undefined	80	100	200			
1	7	Lunch		5.000 (28%) *	5	Triangular	Undefined	80	100	200			
1	8	Dinner		15.000 (28%) *	15	Triangular	Undefined	80	100	200			

ACEIT

Compare Discrete and Unitized

For reference, note unitized approach and discrete approach yields the same result

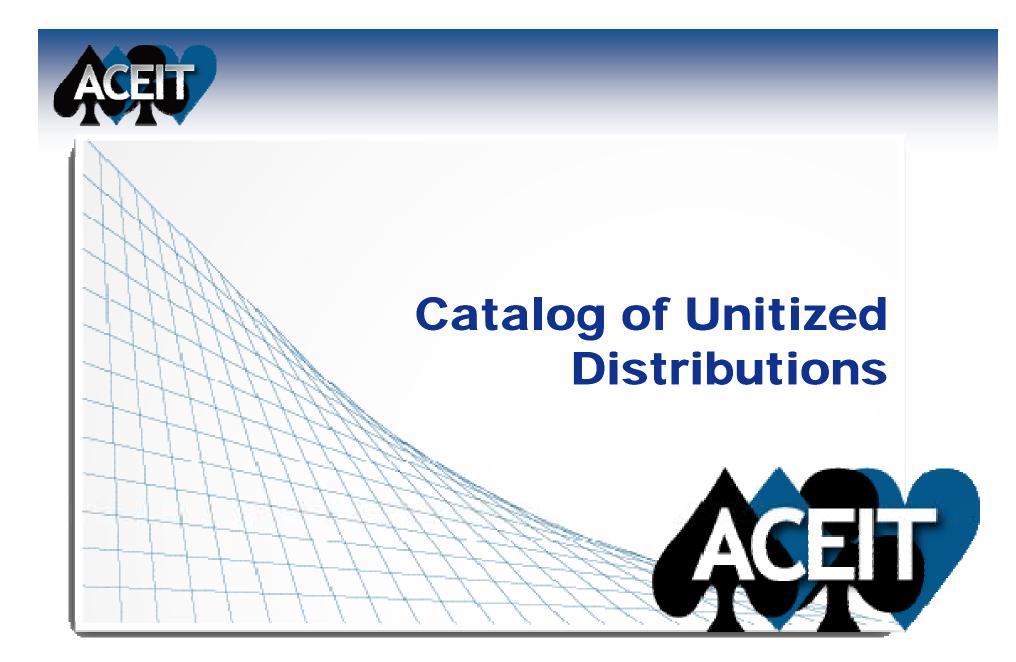
ACE	7.2 - [Unitized ACEIT Workshop 3.ace	eit - RI\$K All Col	umns (BY2010)	\$)]										
Eile 🐑 Eile	Elle Edit View Documentation Calc Cases Reports Tools Window Help													
1 🗋 🖆	🗄 🗋 🚰 🚍 🖄 🖓 🖏 🖄 🗳 🐄 🖉 🖓 🕫 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘													
32														
V Unitized ACEITIumns (BY2010\$)														
	WBS/CES Description	Unique ID	Point Estimate	Equation / Throughpu t	Distribution Form	PE Position in Distribution	Low (% of PE)	Mode (% of PE)	High (% of PE)	Low (Value)	High (Value)			
14	*Meals Estimate	*Estimate												
15	One Day's Meals		24.000 (15%) *											
16	Breakfast		4.000 (28%) *	4	Triangular	Undefined	80	100	200					
17	Lunch		5.000 (28%) *	5	Triangular	Undefined	80	100	200					
18	Dinner		15.000 (28%) *	15	Triangular	Undefined	80	100	200					
19														
20	One Day's Meals		24.000 (15%) *											
21	Breakfast		4.000 (28%) *	4	Triangular	Mode				3.20	8			
22	Lunch		5.000 (28%) *	5	Triangular	Mode				4	10			
23	Dinner		15.000 (28%) *	15	Triangular	Mode				12	30			
24														
25	*INPUT VARIABLES	*IN_VAR												


Algebraic Using Unitized Distributions

Given:

Cost Element Point Estimate = Your Methodology

Its uncertainty can then be expressed:


- Cost Element _{Uncertainty} = f(Your Methodology, Distribution Shape, Distribution Parameters)
- Cost Element Uncertainty =
 - Your Methodology * Unitized Distribution

Definition

- A unitized distribution has a center value of one.
- A unitized distribution is designed to be modeled as a multiplier of point estimates.
- A unitized distribution is useful when discrete bounds or distribution shape is unknown.

The AFCAA Cost Risk and Uncertainty Analysis Metrics Manual (CRUAMM) will provide guidelines and empirical metrics for developing cost uncertainty analyses

A Catalog of Empirically-Based Unitized Uncertainty Distributions

	Sample		My Point Estimate is the:	
Dataset	CV	Mean	Median	Mode
WBS # and Stratification Class	nn	Lognormal (Mean, Std Dev)	Lognormal (Mean, Std Dev)	Lognormal (Mean, Std Dev)
WBS # and Stratification Class	nn	Normal (Mean, Std Dev)	Normal (Mean, Std Dev)	Normal (Mean, Std Dev)
WBS # and Stratification Class	nn	Triangular (Low, Mode, High)	Triangular (Low, Mode, High)	Triangular (Low, Mode, High)
WBS # and Stratification Class	nn	Beta (Low, High, Alpha, Beta)	Beta (Low, High, Alpha, Beta)	Beta (Low, High, Alpha, Beta)

Catalog and ACEIT Instructions

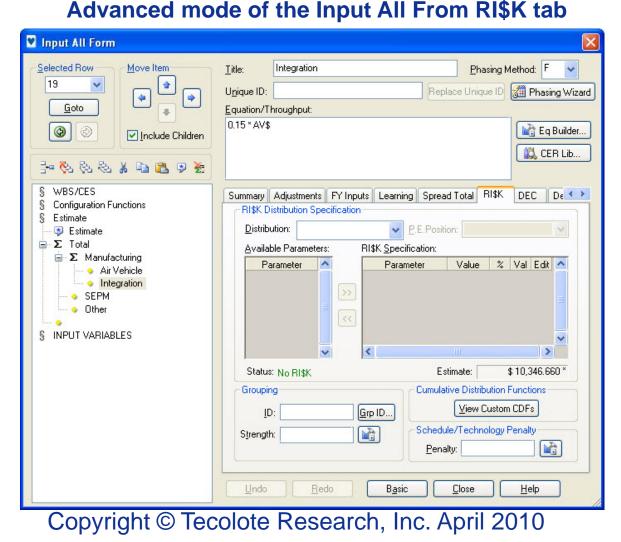
	Sample		My Point Estimate is the:	
Dataset	CV	Mean	Median	Mode
WBS # and Stratification Class	nn	Normal (Mean, Std Dev)	Normal (Mean, Std Dev)	Normal (Mean, Std Dev)
WBS # and Stratification Class	nn	Lognormal (Mean, Std Dev)	Lognormal (Mean, Std Dev)	Lognormal (Mean, Std Dev)
WBS # and Stratification Class	nn	Triangular (Low, Mode, High)	Triangular (Low, Mode, High)	Triangular (Low, Mode, High)
WBS # and Stratification Class	nn	Beta (Low, High, Alpha, Beta)	Beta (Low, High, Alpha, Beta)	Beta (Low, High, Alpha, Beta)

Distribution Type	PE Position	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5	Priority 6	Priority 7	
Normal	Mean/ Median/ Mode	cv 🤇	SD	Sp	н	L			Legend: L = Low (Value) or Low (%
	Low	High							H = High Value or High (%
Log Normal	Mean/ Median/ Mode	ASE	cv (SD	Sp	н	L		Note that you should also <u>Percentile</u> and <u>High Perce</u> Low and/or High values. Sp = <u>Spread</u> Sk = <u>Skew</u> ASE = Adjusted SE
	Low	High							CV = Coefficient of Variati
<u>Triangular</u> (See Note 1)	Mode	L,H	Mode%,H or Mode%,L	Sk,H or Sk,L	SD,H or SD,L	Sp,H or Sp,L	Mode%,CV or Mode%,SD or Mode%,Sp	Sk,CV or Sk,SD or Sk,Sp	SD = <u>Standard Deviation</u> Mode = Most likely value Mode% = Confidence prol Note 1: For the Triangular distribu confidence level of the mo
<u>Beta</u>	Mode	CV,alpha, 🗸	L,H,alpha, beta	Д,Н	alpha,beta	H,alpha, beta	L,alpha, beta		column. The confidence r 0.0 and 1.0. Enter the PE range in the Spread field.
	Mode	Mode%,CV or Mode%,SD or Mode%,Sp	Sk,CV or Sk,SD or Sk,Sp	Mode%,H <i>or</i> Sk,H	Mode%,L or Sk,L				Note 2: For the Uniform distribut confidence level of the in Mode% column. The cor between 0.0 and 1.0. Eve specifications for Uniform
<u>Uniform</u> (see Note 2)	Mean/ Median	CV or SD or Sp or H							help topic for Uniform for t Note 3: For Weibull distribution, p different meanings depend entered. For example, if s
	Undefined	CV, H or SD, H or Sp, H							alone, it must be a preset or H). Values for Scale (b 0.0001 and 30000.0. Ran (alpha) is 1.0 to 300.0. Fo
	Low	Н							case, the <u>Low Percentile</u> is the Skew is the confidence
<u>Weibull</u> (See Note 3)	Mode	Shape, Scale	L, H	Sp	Mode % <i>or</i> L,Sk				mode. This value must be 0.5. See <u>Weibull Distribut</u> information.

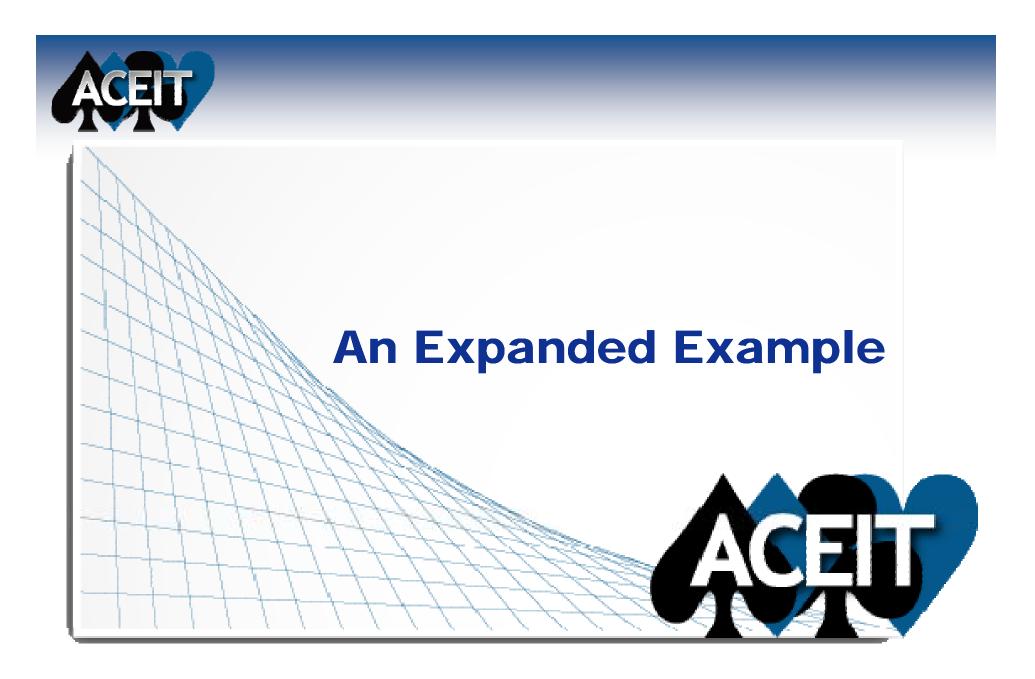
n entering the mode

er the Mode % etween with fixed

he the ust be ed. See ete list.


its have e fields given (i.e., L, M between ape ority 4 0.0%, and 0.0 and ore

Source: ACEIT Help


Use the Input All Form's RI\$K Tab to Enter Distribution Information

Steps in defining a distribution:

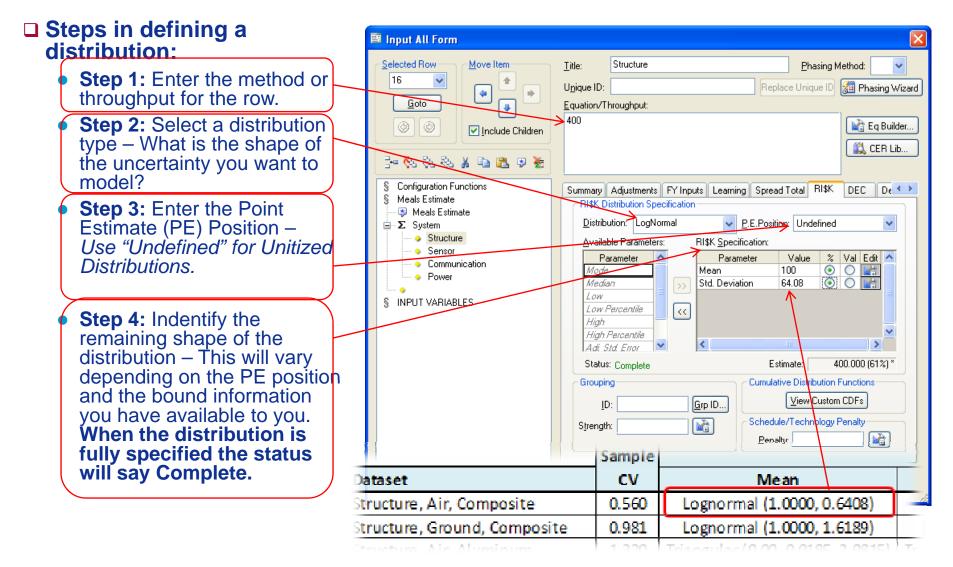
- **Step 1:** Enter the method or throughput for the row.
- Step 2: Select a distribution type – What is the shape of the uncertainty you want to model?
- Step 3: Enter the Point Estimate (PE) Position – What does the point estimate represent (i.e. the mode, low, high, median, unknown)?
- Step 4: Indentify the remaining shape of the distribution – This will vary depending on the PE position and the bound information you have available to you.
 When the distribution is fully specified the status will say Complete.

Source: RI\$K Training 12 Apr 2010

Example

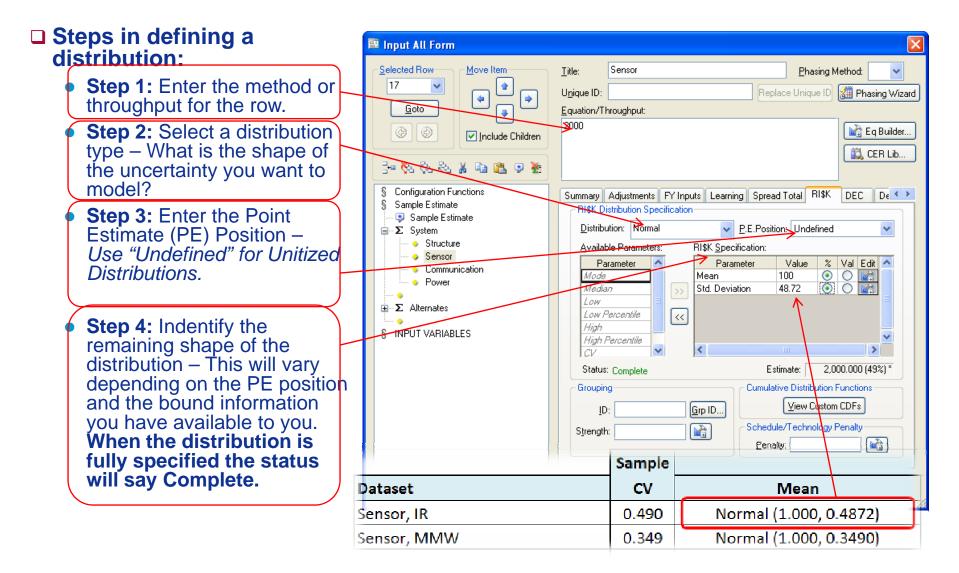
Begin with a point estimate

🛛 ACE 7	ACE 7.2 - [Unitized ACEIT Workshop 4.aceit - Methodology (BY2010\$)]												
👯 💽 Eile	Edit View Documentation Calo	: C <u>a</u> ses <u>R</u> eports <u>T</u> ools	<u>W</u> indow <u>H</u> elp										
i 🗋 💕	🚽 😤 🦪 📐 👗 🗈 🕰 🛷	😻 🔊 (* 📑 🔿 🤌	🇞 🏇 🖛 📲 🕴 100% 🔹										
29	• f_* 🛍 🚵												
🖉 Uni	tized ACEITology (BY2010\$)												
	WBS/CES Description	Point Estimate	Equation / Throughput										
14	*Sample Estimate												
15	System	4,100.000 *											
16	Structure	400.000 *	400										
17	Sensor	2,000.000 *	2000										
18	Communication	900.000 *	900										
19	Power	800.000 *	800										

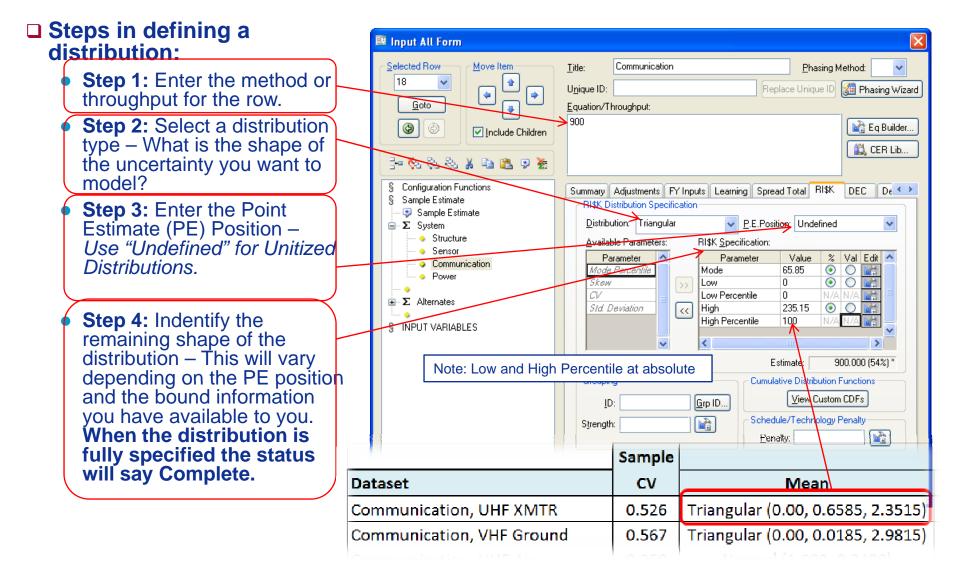

Using a Catalog of Unitized Distributions

- Locate appropriate table
- Select row for your WBS and Class
- Select column for the your point estimate interpretation

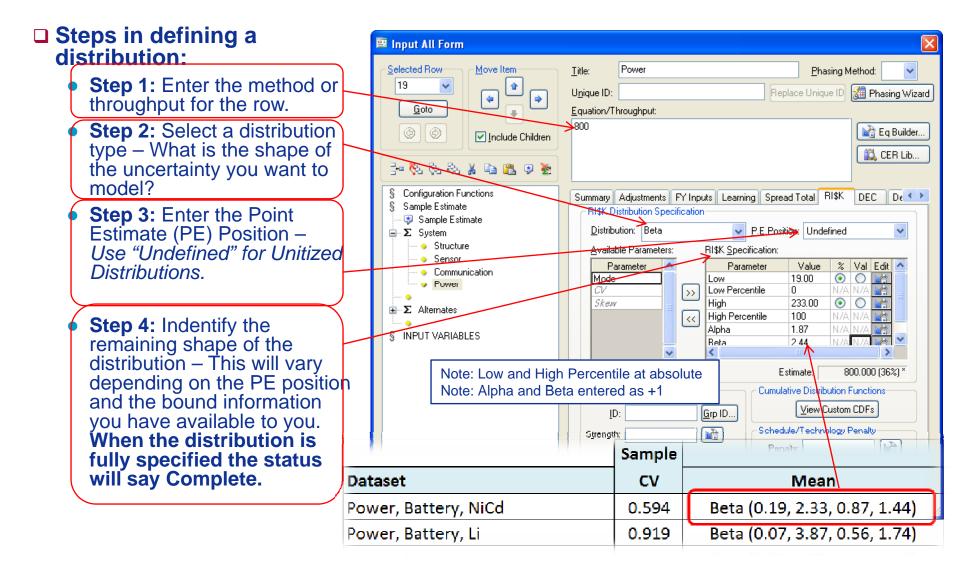
	Sample	My Point Estimate is the:								
Dataset	cv	Mean	Median	Mode						
Sensor, IR	0.490	Normal (1.000, 0.4872)	Normal (1.000, 0.4872)	Normal (1.000, 0.4872)						
Sensor, MMW	0.349	Normal (1.000, 0.3490)	Normal (1.000, 0.3490)	Normal (1.000, 0.3490)						
Sensor, Laser	0.670	Normal (<u>1.0</u> 00, 0.6732)	Normal (1.000, 0.6732)	Normal (1.000, 0.6732)						
Sensor, Tri-mode	0.855	Beta (0.28, 2, 0.44, 2.89)	Beta (0.82, 7.42, 0.44, 2.89)	Beta (1.00, 15.07, 0.44, 2.89)						
	Sample		My Point Estimate is the:							
Dataset	cv	Mean	Median	Mode						
Structure, Air, Composite	0.560	Lognormal (1.0000, 0.6408)	Lognormal (1.1969, 0.7602)	Lognormal (6.1976, 1.1691)						
Structure, Ground, Composite	0.981	Lognormal (1.0000, 1.6189)	Lognormal (1.9029, 3.0807)	Lognormal (6.8904, 11.1551)						
Structure, Air, Aluminum	1.320	Triangular (0.00, 0.0185, 2.9815)	Triangular (0.00, 0.0210, 3.3888)	Triangular (0.00, 1.0000, 16.131						
Structure, Ground, Aluminum	0.125	Normal (1.0000, 0.1256)	Normal (1.0000, 0.1256)	Normal (1.0000, 0.1256)						
	Sample		My Point Estimate is the:							
Dataset	cv	Mean	Median	Mode						
Communication, UHF XMTR	0.526	Triangular (0.00, 0.6585, 2.3515)	Triangular (0.00, 0.6910, 2.5088)	Triangular (0.00, 1.0000, 3.6310						
Communication, VHF Ground	0.567	Triangular (0.00, 0.0185, 2.9815)	Triangular (0.00, 0.0210, 3.3888)	Triangular (0.00, 1.0000, 16.131						
Communication, UHF Air	0.350	Normal (1.000, 0.3490)	Normal (1.000, 0.3490)	Normal (1.000, 0.3490)						
Communication, UHF Sea	0.423	Triangular (0.00, 1.4385, 1.5715)	Triangular (0.00, 1.3610, 1.4788)	Triangular (0.00, 1.0000, 1.0910						
	Sample		My Point Estimate is the:							
Dataset	cv	Mean	Median	Mode						
Power, Battery, NiCd	0.594	Beta (0.19, 2.33, 0.87, 1.44)	Beta (0.21, 2.55, 0.87, 1.44)	Beta (0.19, 12.39, 0.87, 1.44)						
Power, Battery, Li	0.919	Beta (0.07, 3.87, 0.56, 1.74)	Beta (0.11, 5.47, 0.56, 1.74)	Beta (0.07, 52.02, 0.56, 1.74)						
Power, Networks	0.801	Beta (0.07, 2.72, 0.66, 1.20)	Beta (0.08, 3.20, 0.66, 1.20)	Beta (1.00, 38.65, 0.66, 1.20)						
Power, Generator	0.600	Lognormal (1.0000, 0.6408)	Lognormal (1.1969, 0.7602)	Lognormal (6.1976, 1.1691)						



Input All Form: Lognormal



Input All Form: Normal

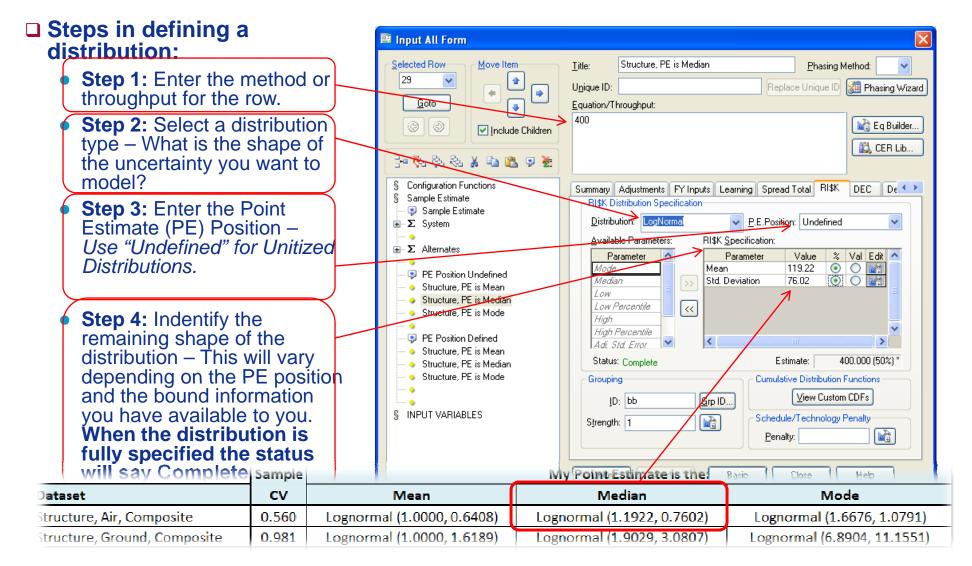


Input All Form: Triangular

Input All Form: Beta

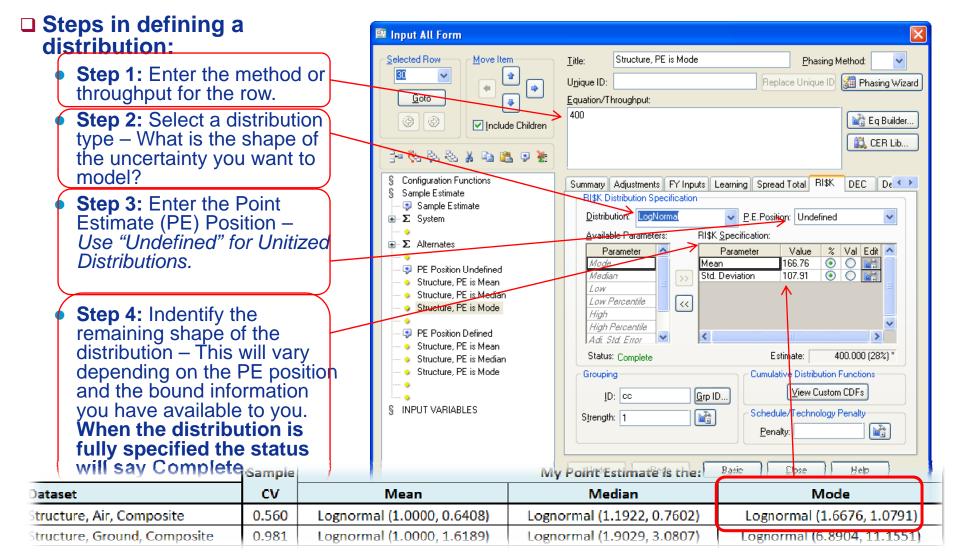
Result

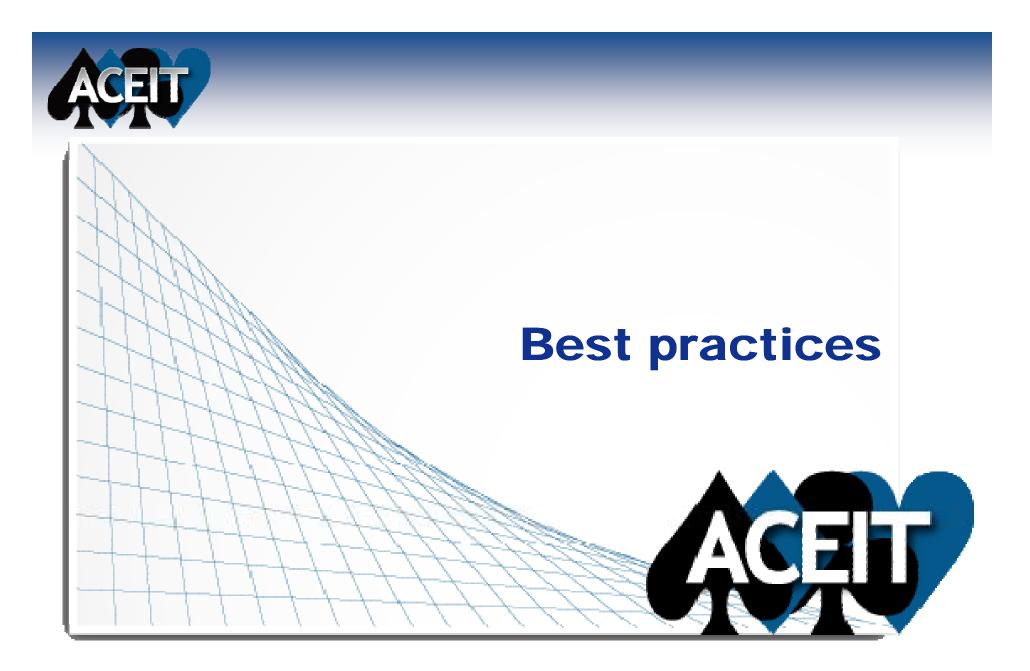
M AC	ACE 7.2 - [Unitized ACEIT Workshop 4.aceit - RISK All Columns (BY2010\$)]												
: 💌 E	🐑 Eile Edit View Documentation Calc Cases Reports Iools Window Help												
10	i 🗋 😂 📕 🕋 🎒 🖄 💺 🗈 🏝 🗳 🐝 🤊 🔍 🖙 🖎 🛷 🏷 📲 📲 100% 🔹 🥊 Arial 💿 🔹 🔺 🖄 🗸 🗛 🗸 🗛 🖓 🖬 📓 🗦 • 🐂 🍇 • 🛔												
35	- 🗾 🚘 🛍 🍌												
/ 🖲 I	Initized ACEITlumns (BY2010\$)												
	WBS/CES Description	Point Estimate	Equation / Throughput	Distribution Form	PE Position in Distribution	Mean (% of PE)	Std Dev (% of PE)	Low (% of PE)	Mode (% of PE)	High (% of PE)	Alpha	Beta	
15	System	4,100.000 (44%) *											
16	Structure	400.000 (61%) *	400	LogNormal	Undefined	100	64.08						
17	Sensor	2,000.000 (49%) *	2000	Normal	Undefined	100	48.72						
18	Communication	900.000 (54%) *	900	Triangular	Undefined			0	65.85	235.15			
19	Power	800.000 (36%) *	800	Beta	Undefined			19.00		233.00	1.87	2.44	


Alternate Point Estimate Positions

Each of the preceding four elements assumed the point estimate was the mean.

The next two elements assume the point estimate is the Median and the Mode.




Input All Form: Lognormal With Median Point Estimate

Input All Form: Lognormal With Mode Point Estimate

Leave the PE Position in Distribution as "Undefined"

Retain positive control over model inputs

ACE	ACE 7.2 - [Unitized ACEIT Workshop 5.aceit - RI\$K All Columns (BY2010\$)]													
🛛 💟 Eile	Edit View Documentation Calc Case	es <u>R</u> eports <u>T</u> ools <u>Y</u>	<u>W</u> indow <u>H</u> elp											
i 🗋 💕	E 🖸 🚰 🖂 🙆 👗 🖹 🖓 🐝 🤊 രୁ 🐎 ৯ 🛷 🐄 🖉 📲 100% 🔹 🚽 Arial 🔹 🔹 🗛 - 💁 - 🖪 I 🖳													
45 🔹 🏂 🍓 🏊														
Vnitized ACEITlumns (BY2010\$) Unitized ACEIT Worktimate, with Risk)														
	WBS/CES Description	Point Estimate	Equation / Throughput	Distribution Form	PE Position in Distribution	Mean (% of PE)	Std Dev (% of PE)							
27	*PE Position Undefined													
28	Structure, PE is Mean	400.000 (62%) *	400	LogNormal	Undefined	100	64.08							
29	Structure, PE is Median	400.000 (50%) *	400	LogNormal	Undefined	119.22	76.02							
30	Structure, PE is Mode	400.000 (28%) *	400	LogNormal	Undefined	166.76	107.91							
31														
32	*PE Position Defined													
33	Structure, PE is Mean	400.000 (62%) *	400	LogNormal	Mean		64.08							
34	Structure, PE is Median	400.000 (50%) *	400	LogNormal	Median		76.02							
35	Structure, PE is Mode	400.000 (28%) *	400	LogNormal	Mode		107.91							

	Sample		My Point Estimate is the:	
Dataset	CV	Mean	Median	Mode
Structure, Air, Composite	0.560	Lognormal (1.0000, 0.6408)	Lognormal (1.1922, 0.7602)	Lognormal (1.6676, 1.0791)
Structure, Ground, Composite	0.981	Lognormal (1.0000, 1.6189)	Lognormal (1.9029, 3.0807)	Lognormal (6.8904, 11.1551)

A Bad Practice to Avoid

Tempting idea: Simplify body of your estimate by defining distributions as Input Variables.

ACE	ACE 7.2 - [Unitized ACEIT Workshop Pitfall.aceit - RI\$K All Columns (BY2010\$)]													
🗄 💌 Eile	Elle Edit View Documentation Calc Cases Reports Tools Window Help													
: 🗅 💕	: 🔄 😤 🖂 🐧 🔏 🗈 隆 🕩 🤇	- 📴 🛋 🦽	🇞 🏇 ←∃ →∃ 100%	6 📼 💂 🗄 Arial		• <u>A</u> • <u>A</u> • B I	U 🕴 😓 🗄 F	RI\$K All Columr						
31 🔹 🏂 🛍 🚵														
🖉 Un	Vnitized ACEITlumns (BY2010\$)													
	WBS/CES Description	Unique ID	Point Estimate	Equation / Throughput	Distribution Form	PE Position in Distribution	Mean (% of PE)	Std Dev (% of PE)						
14	*Sample Estimate	*Estimate												
15	System		530.000 *											
16	Structures		530.000 *											
17	Fwd Structure		150.000 *	150 * UDIST										
18	Mid Structure		200.000 *	200 * UDIST										
19	Aft Structure		180.000 *	180 * UDIST										
20														
21	*INPUT VARIABLES	*IN_VAR												
22	Structure Unitized Uncertainty Distribution	UDIST	1.000 *	1	LogNormal	Undefined	100	64.08						

Not recommended as it results in unintended correlation.

Defined and Illustrated Unitized Distributions

Demonstrated How to Use Unitized Distributions in ACEIT

