Discovering DECs

ACEIT Users Workshop January 27, 2010 Chris Gardiner

Abstract

- ACEIT includes many features and capabilities that once discovered begin to reveal the real power of ACEIT to the user. One such feature is the Dynamic Equation Columns (DECs). The discovery of DECs opens new frontiers to the estimator, enhances creativity, increases model efficiency, decreases model length and makes navigation easier, and decreases errors. This presentation will show an actual estimate example that is well suited for multiple uses of DECs. It will show the repetitious work and problems involved in building a model in the "pre-DEC discovery" period. Then the presentation will take an iterative look at the model evolution as DECs are discovered and additional DEC opportunities and application are realized and implemented.

ALL DATA IN THIS
 PRESENTATION ARE ENTIRELY NOTIONAL AND DO NOT REPRESENT ACTUAL DATA OF ANY CONTRACTOR OR PROGRAM

Presentation Outline

- Estimate Problem

■ Pre-DEC Discovery ACEIT Sessions

- The Discovery of DECs
- What is a DEC
- DEC Types
- Adding DECs to Your Session
- Referencing DEC Data
- DEC Uses
> Evolving ACE Sessions
- Viewing DEC Results

■ New ACE 7.2 DEC Features

- Summary

Discovering DECs - Estimate Problem

- ABC Support Equipment cables are over 35 years old, wearing out, and causing work stoppages
- Procurement of replacement cables needed
- Develop short turn estimate for ABC Support Equipment cable spares, with funding limitations, that can easily and quickly run excursions for decision making
- Need to buy as many of the cables as possible, at the required quantities, within the available funding.
- If we determine we can't get all of the cables at the required quantities we have to prioritize and make a determination which cables we can get.

Discovering DECs - Estimate Problem

(cont)

- There is limited procurement funding available
- Limited design and testing effort to be accomplished during FY2010
- Will use existing tech documents and drawings to extent possible
- Will use procurement funding

■ Production effort during FY2011

- Finalization during first 7 months of FY2012
- There are 127 different cables, each with different spares quantity requirements
- Cost data available
- Initially - Two catalog systems
- Later - Quantity Pricing Matrix

Pre-Dec Discovery

- What if DECs didn't exist?
- Significantly more input variables

- Significantly more unique IDs

- Repetitious work and increased equation complexity

- Less efficient and increased opportunity for error
- Pre-DEC Discovery Cables Spares ACE Sessions
- Prior to Priority Level
- With Priority Level

Pre-Dec Discovery ACE Sessions

- Pre-DEC Discovery Cable Spares Estimate Model (prior to priority level).aceit
- Multiplies a unique ID for Price and a unique ID for Qty for each of 127 cables
- 254 additional input variables and unique IDs
- Number of Cables for calculating design/drawing costs entered as a constant

Pre-Dec Discovery ACE Sessions (cont)

Pre-DEC Discovery Cable Spares Estimate Model (prior to priority level).aceit

WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	Start Date	Finish Date
Production		Prod\$	\$7,833.1 *						
ABC Cables		ABCCables	\$4,470.3 *						
X01 Cable	3020		\$2.8*	F	(0015 * X01Qty	2004	\$	2011	2011
X011 Cable	3020		\$ 5.6 *	F	X011\$ * X011Qty	2004	\$	2011	2011
X012 Cable	3020		\$ 6.7 *	F	X012\$ * X012Qty	2004	\$	2011	2011
X013 Cable	3020		\$ 3.6 *	F	X013\$ * X013Qty	2004	\$	2011	2011
XO2 Cable	3020		\$4.0*	F	XO2S * XO2Qty	2004	\$	2011	2011
XO23 Cable	3020		\$ 10.2 *	F	X023s * X023Qty	2009	\$	2011	2011
X023 J2 Cable	3020		\$ 5.9 *	F	XO23J2\$ * X 233 J 2 ty	2004	\$	2011	2011
XO24 Cable	3020		\$7.2*	F	X024\$ * X024Qty	2004	\$	2011	2011

Pre-Dec Discovery ACE Sessions (cont)

■ Pre-DEC Discovery Cable Spares Estimate Model (with priority level added).aceit

- We don't have enough funding to do all cables and associated quantities
- We have to prioritize and determine which cables, in order of priority, we can get for the available funding
- Requires 127 additional unique IDs for priority of each cable
- Add a priority level input variable to be used to calculate cable price of all cables that have a higher priority
- Eliminate "Number of Unique Cables" input variable and use Priority level to calculate design/drawing costs
- Total additional input variables for Price, Qty, and Priority is 381

Pre-Dec Discovery ACE Sessions (cont)
Pre-DEC Discovery Cable Spares Estimate Model (with priority level added).aceit

WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	Start Date	Finish Date
Production		ProdS	\$5,438.9 *						
ABC Cables		ABCCables	\$2,315.5 *						
X01 Cable	3020		\$0.0*	F	If(XX1Priority<PriorityLLl, X01\$ * X01Qty, 0)	2004	\$	2011	2011
X011 Cable	3020		\$0.0*	F	HfXX011Priority<Prioritylv, X011\$ * X011Qty, 0)	2004	\$	2011	2011
X012 Cable	3020		\$0.0*	F	HfXO12Priority<Prioritylv, X012S * X012Qty, 0)	2004	\$	2011	2011
X013 Cable	3020		\$0.0*	F	HfXO13Priority<Prioritylu, X013S * X0130ty, 0)	2004	\$	2011	2011
XO2 Cable	3020		\$4.0*	F	If(X02Priority<PriorityLLl, X02S * X02Qty, 0)	2004	\$	2011	2011
X023 Cable	3020		\$0.0*	F	HfXO23Priority<PriorityLlv, X023S * XO230ty, 0)	2009	\$	2011	2011
X023 J2 Cable	3020		\$0.0*	F		2004	\$	2011	2011

The Discovery of DECs

What is a DEC?

- Dynamic Equation Columns (DECs) are user-created columns used for intermediate inputs or calculations on a row
- Makes session wider instead of longer
- Data stored in DECs should be static
- DEC columns evaluate as constants so data stored in DECs and equations evaluating in DECs are never time phased
- Risk cannot be applied to data in DEC columns
- What-if drills cannot be performed on DEC data

DEC Types

- Normal - holds non-cost data and/or equations; excellent for marking rows and storing index vectors
- Cost - holds cost data and/or equations.
- Comment - holds/stores comments and text that is not evaluated or used in ACE calculations (i.e. model notes)
- Date - holds dates in the form ddMMMyyyy (i.e. Start and Finish Date Columns)
- For Normal and Cost DECs you can select to "Sum up results of children into their parents for this column"
- DEC Type Symbols - separate the column unique ID from the column description

SYMBOL	MEANING
+	Summing Normal DEC
$!$	Non-Summing Normal DEC
$\$$	Summing Cost DEC
$!\$$	Non-Summing Cost DEC
$*$	Comment DEC
Date	Date DEC

Adding DECs to Your Session

- Each DEC has a general title and an ID name that is used in equations to call information from the column
- Add New DEC and Edit DEC attributes dialogs
- Edit > Add DEC
- Add New DEC icon ${ }^{4}$ on the Session Construction toolbar
- Edit > Edit Column Properties

Referencing DEC Data

- To use the values in the DEC columns:
- On the current row - enter the DEC name in the Equation/Throughput column (e.g. DECID)
- On a different row - using dot notation include the unique ID of the row being referenced followed by a . and the DEC name (e.g. UniqueID.DECID)

DEC Uses

- Use as an additional Equation/Throughput column
- Use when doing a simple total cost estimate that has no time phasing
- Use to store data to use in other equations
- Simply add DECs for the variables in your CERs
> Quantity, Price, learning curve parameters, etc.
> Creates a wider session (more columns) instead of a longer session (more rows)
- Use with matrix type structures
- COEF function; MatVal function; MatColCol; MatColTot; etc.
- See Tutorial - Basic Matrix Operations for an example of how to use DECs in matrix operations
- You can also view the Example session entitled 98 - Implementing Matrix Functions to see how DECs are used with matrix functions

DEC Uses (cont)

- Use to store information retrieved from 3rd party tools
- Example sessions 05a - MS Project Plug-In, 05b - SEER Plug-In, and 05c - Price Plug-In show how DECs are used to store information retrieved from Microsoft Project, SEER and Price
- Use as an index in functions
- Use to store index data to use with the SUMIF function
- Example session 06a - Creating Summary Sections

Using DECs as Variables or Factors to be used in Equations

- ACE Session: Cable Estimate with DECs (Qty; Price).aceit
- Prior to addition of priority
> No Priority - assumes design/drawing required for each cable
- Rather than adding input variables for price and quantity for each of 127 cables - add a DEC for Qty and a DEC for Price
- Eliminates 254 input variables and associated unique IDs
- Simply multiply the two DECs together using the same equation on each row (Price * Qty)

Using DECs as Variables or Factors to be used in Equations (cont)

- Cable Estimate with DECs (Qty; Price)

WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Qty (+) Quantity	Price (I\$) Unit Price	Fiscal Year	Units	Start Date	Finish Date
*ABC Cables Estimate		*Estimate					4				
Total ABC Cables Estimate			\$ 12,573.1 *			,					
Design/Development		Dev\$	\$4,790.0 *								
Cable Design/Development	3020	Develop	\$ 955.0 *	F	NumCables*AvgDevHrsCable*EngRate					2010	2010
Drawing Updates	3020	Drawings	\$ 596.9*	F	NumCables*DrawHrs*EngRate					2010	2010
ST\&E	3020	STE	\$ 179.5*	F	Develop * STEFact					2010	2010
Program Support	3020	DevProgSupport	\$ 3,058.5*								
Contractor A Dev SE/PM	3020		\$ 1,784.6 *	F	ContrAEH*ContrARate*AnnualHrs					2010	2010
Contractor B Dev SE/PM	3020		\$ 794.9 *	F	ContrBEH*ContrBRate*AnnualHrs					2010	2010
Fee	3020		\$ 479.0 *	F	(Develop+Drawings+STE + DevProgSupport)*F						
Production		Prod\$	\$ 7,756.0 *			S	DE		Re	rence	On
ABC Cables		ABCCables	\$ 4,400.8 *								
XO1 Cable	3020		\$ 2.7 *	F	Price * Qty					Row	
XO11 Cable	3020		\$ 5.4 *	F	Price * Qty	6	800	2004	\$	2011	2011
XO12 Cable	3020		\$ 6.7 *	F	Price * Qty	7	850	2004	\$	2011	2011
XO13 Cable	3020		\$ 3.6 *	F	Price * Qty	8	400	2004	\$	2011	2011
XO2 Cable	3020		\$ 3.8 *	F	Price * Qty	9	375	2004	\$	2011	2011
XO23 Cable	3020		\$ 10.2 *	F	Price * Qty	7	1450	2009	\$	2011	2011
XO23 J2 Cable	3020		\$ 5.9 *	F	Price * Qty	8	650	2004	\$	2011	2011
XO24 Cable	3020		\$ 7.1 *	F	Price * Qty	12	525	2004	\$	2011	2011
XO29 Cable	3020		\$ 6.8 *	F	Price * Qty	6	1125	2009	\$	2011	2011
XO3 Cable	3020		\$ 3.6 *	F	Price * Qty	8	400	2004	\$	2011	2011
XO61 Cable	3020		\$ 3.4 *	F	Price * Qty	8	375	2004	\$	2011	2011
XO62 Cable	3020		\$ 17.0*	F	Price * Qty	6	2500	2004	\$	2011	2011
XO63 Cable	3020		\$ 22.5 *	F	Price * Qty	6	3750	2009	\$	2011	2011
XOGRP1 Cable	3020		\$ 2.8 *	F	Price * Qty	10	250	2004	\$	2011	2011
XOGRP2 Cable	3020		\$ 2.8 *	F	Price * Qty	10	250	2004	\$	2011	2011
Accessory 1	3020		\$ 128.0*	F	Price * Qty	8	16000	2009	\$	2011	2011
Accessory 10	3020		\$ 942.5*	F	Price * Qty	13	72500	2009	\$	2011	2011
Accessory 2	3020		\$ 88.0*	F	Price * Qty	8	11000	2009	\$	2011	2011
Accessory 22	3020		\$ 104.0 *	F	Price * Qty	4	26000	2009	\$	2011	2011
Accessory 3	3020		\$ 52.0 *	F	Price * Qty	8	5750	2004	\$	2011	2011
Accessory 4	3020		\$ 260.0 *	F	Price * Qty	10	26000	2009	\$	2011	2011
Accessory 5	3020		\$ 172.0 *	F	Price * Qty	8	19000	2004	\$	2011	2011
Switch Module	3020		\$ 30.5 *	F	Price * Qty	12	2250	2004	\$	2011	2011
Y201 Cable	3020		\$ 27.0 *	F	Price * Qty	6	4500	2009	\$	2011	2011
Y201A Cable	3020		\$ 61.1 *	F	Price * Qty	9	6000	2004	\$	2011	2011
Y202 Cable	3020		\$ 4.3 *	F	Price * Qty	9	475	2009	\$	2011	2011

Using DECs to store data to use in other equations

- ACE Session: Cable Estimate with DECs (Qty; Price; Priority; Number Cables).aceit
- Not enough funding for all cables and associated quantities. Must prioritize and determine which cables, in order of priority, we can get for the available funding
- In addition to Price and Qty DECs we add a Priority DEC to be used in calculation of Qty and/or total cost for each cable to be procured
- Eliminates an additional 127 input variables and associated Unique IDs
- Add a Number of Cables DEC which can use the Qty DEC or the Priority DEC to calculate the number of cables requiring design/ drawings
- Add an input variable for priority level to be used to determine if any cost will be calculated for each cable (Use in the Qty DEC; could use in the Number Cable DEC and the Equation)
- Uses the same equation in the Equation/Throughput column and DECs

Using DECs to store data to use in other equations (cont)

- Cable Estimate with DECs (Qty; Price; Priority; Number Cables)

Using DECs to store data to use in other equations - UDF

- ACE Session: Cable Estimate with DECs and CER UDF.aceit
- This is a separate model - uses a CER rather than government catalog systems for Price
- Developed a log-linear CER using 6 specific cables prices obtained from Contractor A as the independent variable and the corresponding prices from the government catalog system as the dependent variable
- Used a User Defined Function (UDF) for the CER
- The UDF is referenced on each row (same on all rows)
- The CER UDF includes the arguments of Price and Qty which are contained in the same DECs used in the previous model

Using DECs to store data to use in other equations - UDF (cont)

- Cable Estimate with DECs and CER UDF

WBS/CES Description	Unique ID	Point Estimate	Equation / Throughput	Priority (!)	Price (! $\$$) Unit Price	Qty (+) Quantity	NumberCables (+) Cables	Fiscal Year	Units	Start Date	Finish Date
Production	Prod\$	\$ 6,360.4 *									
ABC Cables	ABCCables	\$ 3,144.8 *									
X01 Cable		\$ 0.0 *	CERUDF(Price, Qty)	95	400	$1 \mathrm{I}($ Priority<PriorityLvl, 6, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X011 Cable		\$0.0*	CERUDF(Price, Qty)	103	800	$1 f($ Priority<PriorityLvl, 6, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X012 Cable		\$ 0.0 *	CERUDF(Price, Qty)	104	850	$1 \mathrm{l}($ Priority<PriorityLv, 7, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X013 Cable		\$ 0.0 *	CERUDF(Price, Qty)	66	400	$1 \mathrm{I}($ Priority<PriorityLvl, 8, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
XO2 Cable		\$ 17.6*	CERUDF(Price, Qty)	43	375	$1 \mathrm{l}($ Priority<PriorityLvl, 9, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
XO23 Cable		\$0.0*	CERUDF(Price, Qty)	91	1450	If(Priority<PriorityLvl, 7, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2009	\$	2011	2011
XO23 J2 Cable		\$0.0*	CERUDF(Price, Qty)	118	650	$1 f($ Priority<PriorityLvl, 8, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
XO24 Cable		\$ 28.9 *	CERUDF(Price, Qty)	38	525	1 If(Priority<PriorityLvl, 12, 0)	$\mathrm{IF}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
XO29 Cable		\$0.0*	CERUDF(Price, Qty)	105	1125	$1 f($ Priority<PriorityLvl, 6, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2009	\$	2011	2011
XO3 Cable		\$0.0*	CERUDF(Price, Qty)	108	400	$1 f($ Priority<PriorityLvl, 8, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X061 Cable		\$0.0*	CERUDF(Price, Qty)	106	375	$1 f($ Priority<PriorityLvl, 8, 0)	$\mathrm{IF}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X062 Cable		\$ 0.0 *	CERUDF(Price, Qty)	126	2500	$1 \mathrm{l}($ Priority<PriorityLvl, 6, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
X063 Cable		\$0.0*	CERUDF(Price, Qty)	127	3750	$1 f($ Priority<PriorityLvl, 6, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2009	\$	2011	2011
XOGRP1 Cable		\$ 0.0 *	CERUDF(Price, Qty)	48	250	1 If(Priority<PriorityLvl, 10, 0)	$\mathrm{IF}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
XOGRP2 Cable		\$ 15.2*	CERUDF(Price, Qty)	14	250	$1 \mathrm{f}($ Priority<PriorityLvl, 10, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2004	\$	2011	2011
J-Box 1		\$ 0.0 *	CERUDF(Price, Qty)	54	16000	$1 f($ Priority<PriorityLvl, 8, 0)	$\mathrm{F}(\mathrm{Qty}=0,0,1)$	2009	\$	2011	2011
J-Box 10		\$601.3*	CERUDF(Price, Qty)	13	72500	1 If(Priority<PriorityLvl, 13, 0)	$\mathrm{F}($ Qty $=0,0,1)$	2009	\$	2011	2011
*INPUT VARIABLES	*IN_VAR										
Priority Level	PriorityLv\|	47.0 *	47								
CER UDF	CERUDF (a, b)		$42.55{ }^{\text {* }} \mathrm{a}^{\wedge} .6247^{\text {* }} \mathrm{b}$		1000	1		2009	\$		
	$\begin{gathered} a=\text { Pric } \\ b=\text { Qty } \end{gathered}$	ents:									

Using DECs with Matrix Type

 Structures- MatVal, MatColCol, MatColTot , COEF functions can be used similar to the MatDecVal function except they use the FY columns for the matrix rather than unique DEC columns
- Example - Matrix Value Function

Mat Val (@Matrix, Row, Col)
@Matrix
This argument is a matrix of x-rows and y-columns. As with all ACE matrices, the row address @Matrix is the row preceding the actual matrix data and is just a marker for the beginning of the matrix.
Row
This argument is the matrix row where the value is stored. This argument can either be a value or a variable, but must be an integer.
Col
This argument is the matrix column where the value is stored. This argument can either be a value or a variable, but must be an integer.

Using Matrix Structures - MatVal

- ACE Session: Cable Estimate with DECs and Matrix.aceit
- This is a separate model - uses quantity pricing matrix rather than government catalog system
- Contractor A Quantity Pricing Matrix - Price based on quantity purchased
- Used FY columns on Yearly Phasing Workscreen for matrix
- Each of 127 cables into one of six categories
- Added a Category DEC that ties each cable to the Quantity Pricing matrix
- Use the Matrix Value (MatVal) function in the Price DEC to pull the price, based on the quantity of each cable to be purchased, from the matrix

Using Matrix Structures - MatVal (cont)

- Quantity Pricing Matrix Stored in FY Columns

${ }^{*}$ Manufacturing Representative Cable Bids Matrix				5 Unit Pricing	10 Unit Pricing	15Unit Pricing
Contractor A Quantity Pricing Matrix	PriceMatrix					
Category 1		BY	3020	35000	32000	31000
Category 2		BY	3020	3150	2900	2700
Category 3		$B Y$	3020	17500	17250	17000
Category 4			BY	3020	6500	6250
Category 5		BY	3020	5000	4250	4000
Category 6		BY	3020	4750	4500	4400

- Use Function MatVal to retrieve price from Quantity Pricing Matrix based on quantity and category of each cable to be purchased

WBS/CES Description	Prio
Production	
ABC Cables	
XO1 Cable	
XO13 Cable	
XO2 Cable	
XO23 Cable	
XOGRP2 Cable	
J-Box 1	
J-Box 10	
J-Box 2	
Switch Module	
Y201 Cable	
Y201A Cable	
Y202 Cable	
Y203 Cable	
Y3101 Cable	
Y3112 Cable	

$\begin{gathered} \text { Priority } \\ \text { (!) } \end{gathered}$	Qty (+) Quantity	Price (\$\$) Unit Price
95	$1 \mathrm{f}($ Priority<PriorityLvl, 6, 0)	IF(Qty<10,MatVal(@PriceMatrix, 2,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 2,2),IF(Qty>=15,MatVal(@PriceMatrix, 2, 3),0)))
66	$1 f($ Priority<PriorityLvl, 8, 0)	IF(Qty<10,MatVal(@PriceMatrix, 2,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 2,2),IF(Qty>=15,MatVal(@PriceMatrix, 2, 3),0)))
43	$1 \mathrm{f}($ Priority<PriorityLvl, 9, 0)	IF(Qty<10,MatVal(@PriceMatrix, 2,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 2,2),IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))
91	$1 f($ Priority<PriorityLvl, 7, 0)	IF(Qty<10,MatVal(@PriceMatrix, 6,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 6,2),IF(Qty>=15,MatVal(@PriceMatrix, 6,3),0)))
14	If(Priority<PriorityLvl, 10, 0)	$\mathrm{IF}(\mathrm{Qty}$ <10,MatVal(@PriceMatrix, 6,1), IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 6,2), IF(Qty>=15,MatVal(@PriceMatrix, 6,3),0)))
54	$1 f($ Priority<PriorityLvl, 8, 0)	IF(Qty<10,MatVal(@PriceMatrix, 1,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 1, 2),IF(Qty>=15,MatVal(@PriceMatrix, 1,3),0)))
13	lf(Priority<PriorityLvl, 13, 0)	IF(Qty<10,MatVal(@PriceMatrix, 1,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 1, 2),IF(Qty>=15,MatVal(@PriceMatrix, 1,3),0)))
29	$1 f($ Priority<PriorityLvl, 8, 0)	IF(Qty<10,MatVal(@PriceMatrix, 1,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 1,2),IF(Qty>=15,MatVal(@PriceMatrix, 1,3),0)))
	1 lf(Priority<PriorityLv, 12, 0)	IF(Qty<10,MatVal(@PriceMatrix, 2,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 2,2),IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))
78	$1 f($ Priority<PriorityLvl, 6, 0)	$\mathrm{IF}(\mathrm{Qty}<10, \mathrm{MatVal}(@$ PriceMatrix, 4,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 4,2),IF(Qty>=15,MatVal(@PriceMatrix, 4,3),0)))
62	$1 f($ Priority<PriorityLvl, 9, 0)	$\mathrm{IF}($ Qty $<10, \mathrm{MatVal}(@$ PriceMatrix, 4,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 4,2),IF(Qty>=15,MatVal(@PriceMatrix, 4,3),0)))
15	$1 f($ Priority<PriorityLvl, 9, 0)	IF(Qty<10,MatVal(@PriceMatrix, 4,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 4, 2),IF(Qty>=15,MatVal(@PriceMatrix, 4,3),0)))
81	1 f (Priority<PriorityLvl, 7, 0)	
17	If(Priority<PriorityLv, 13, 0)	$\mathrm{IF}($ Qty $<10, \mathrm{MatVal}(@$ PriceMatrix, 4,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 4,2),IF(Qty>=15,MatVal(@PriceMatrix, 4,3),0)))
71	$1 f($ Priority<PriorityLvl, 9, 0)	IF(Qty<10,MatVal(@PriceMatrix, 5,1),IF(And(Qty>9, Qty<15),MatVal(@PriceMatrix, 5,2),IF(Qty>=15,MatVal(@PriceMatrix, 5,3),0)))

- MatVal function used to determine price in Unit Price DEC

Use to store index data (Use with the SUMIF function)

- ACE Session: Cable Estimate with DECs and Matrix and SUMIF.aceit
- Add Summary Section to summarize cost of each cable category
- Use SUMIF function with Category DEC to summarize cost for each of the 6 cable categories

Use to store index data (Use with the SUMIF function)

- Use the Sumlf function to add together desired rows for Summary Sections

WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Category (!) Mfg Category	Equation / Throughput
Production		Prod\$	\$ 6,743.2*			
ABC Cables		ABCCables	\$ 3,489.4*			
XO1 Cable	3020		\$ 0.0 *	F	2	$1 f($ Priority <PriorityLVl, Price * Qty, 0)
XO11 Cable	3020		\$ 0.0 *	F	2	$1 \mathrm{f}($ Priority <PriorityLlv, Price * Qty, 0)
XO12 Cable	3020		\$ 0.0 *	F	2	$\mathrm{If}($ Priority<PriorityLVl, Price * Qty, 0)
XO23 Cable	3020		\$ 0.0 *	F	6	$1 \mathrm{f}($ Priority <PriorityLlv, Price * Qty, 0)
XOGRP2 Cable	3020		\$ 44.6 *	F	6	$1 f($ Priority <PriorityLVl, Price * Qty, 0)
J-Box 1	3020		\$ 0.0 *	F	1	$1 \mathrm{~F}($ Priority <PriorityLVl, Price * Qty, 0)
J-Box 10	3020		\$ 411.9 *	F	1	$1 f($ Priority <PriorityLVl, Price * Qty, 0)
Switch Module	3020		\$ 34.5 *	F	2	$1 \mathrm{f}($ Priority <PriorityLlv, Price * Qty, 0)
Y201 Cable	3020		\$ 0.0 *	F	4	$1 \mathrm{f}($ Priority<PriorityLVl, Price * Qty, 0)
Y201A Cable	3020		\$ 0.0 *	F	4	$1 \mathrm{f}($ Priority <PriorityLlv, Price * Qty, 0)
Y202 Cable	3020		\$ 57.9 *	F	4	$1 \mathrm{f}($ Priority<PriorityLVl, Price * Qty, 0)
Y203 Cable	3020		\$ 0.0 *	F	6	$1 \mathrm{f}($ Priority <PriorityLlv, Price * Qty, 0)
Y204 Cable	3020		\$ 32.9 *	F	6	$1 \mathrm{~F}($ Priority<PriorityLVl, Price * Qty, 0)
Y3112 Cable	3020		\$ 0.0 *	F	5	If (Priority<PriorityLVl, Price * Qty, 0)
Cable Category Summaries			3,489.4 *			
Sum for Category 1 Cables			1,283.2 *	F		SUMIF(Category, 1,@ABCCables)
Sum for Category 2 Cables			97.0 *	F		SUMIF(Category,2,@ABCCables)
Sum for Category 3 Cables			0.0 *	F		SUMIF(Category, 3,@ABCCables)
Sum for Category 4 Cables			1,208.9 *	F		SUMIF(Category,4,@ABCCables)
Sum for Category 5 Cables			92.6 *	F		SUMIF(Category,5,@ABCCables)
Sum for Category 6 Cables			807.7 *	F		SUMIF(Category,6,@ABCCables)

Viewing DEC Results

- Methodology Reports show DEC results
- Go to the Reports Menu and set the Report Type to Methodology
- Each DEC Reported with two columns: Equation and Result

WBS/CES Description	NumberCables (+) Cables	Result: NumberCables	$\begin{array}{\|l} \text { Priority (!) } \\ \text { Priority } \end{array}$	Result: Priority (!)	Category (!) Mfg Category	Result: Category	Qty (+) Quantity	$\begin{aligned} & \text { Result: } \\ & \text { Qty (+) } \end{aligned}$	Price (!\$) Unit Price	Result: Price (! $\$$
Production		46.0						465.0		
ABC Cables		46.0						465.0		
XO1 Cable	If(Qty $=0,0,1$)		95	95.0	2		If(Priority<PriorityLvl, 6, 01		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO11 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		103	103.0	2	2.0	$1 \mathrm{I}($ Priority<PriorityLvl, 6, 0)		,2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO12 Cable	$\mathrm{If}($ Qty $=0,0,1)$		104	104.0	2	2.0	1 f (Priority<PriorityLvl, 7, 0)		,2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO13 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		66	66.0	2	2.0	1 f (Priority<PriorityLvI, 8, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO2 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$	1.0	43	43.0	2	2.0	1 f (Priority <PriorityLvl, 9, 0)	9.0	2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO23 Cable	$1 f(Q t y=0,0,1)$		91	91.0	6	6.0	$1 \mathrm{f}($ Priority<PriorityLv1, 7, 0)		,2), IF(Qty>=15,MatVal(@PriceMatrix, 6,3),0)))	\$ 4.7
XO23 J2 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		118	118.0	2	2.0	1 f (Priority<PriorityLvl, 8, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO24 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$	1.0	38	38.0	2	2.0	$1 f($ Priority<PriorityLvl, 12, 0)	12.0 .	,2), IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 2.9
XO29 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		105	105.0	2	2.0	1 If (Priority<PriorityLv1, 6, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO3 Cable	$1 \mathrm{f}($ Qty $=0,0,1)$		108	108.0	2	2.0	$1 \mathrm{f}($ Priority<PriorityLvl, 8, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO61 Cable	$\mathrm{If}($ Qty $=0,0,1)$		106	106.0	2	2.0	1 f (Priority<PriorityLvI, 8, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO62 Cable	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		126	126.0	2	2.0	1 If (Priority<PriorityLvl, 6, 0)		2), IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XO63 Cable	$\operatorname{If}(\mathrm{Qty}=0,0,1)$		127	127.0	2	2.0	1 f (Priority<PriorityLvl, 6, 0)		2), IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XOGRP1 Cable	$\mathrm{If}($ Qty $=0,0,1)$		48	48.0	2	2.0	$1 f($ Priority<PriorityLvl, 10, 0)		,2), IF(Qty>=15,MatVal(@PriceMatrix, 2,3),0)))	\$ 3.1
XOGRP2 Cable	$\mathrm{If}($ Qty $=0,0,1)$	1.0	14	14.0	6	6.0	lf (Priority<PriorityLvl, 10, 0)	10.0	2), IF (Qty>=15,MatVal(@PriceMatrix, 6,3),0)))	\$ 4.5
J-Box 1	$\mathrm{If}(\mathrm{Qty}=0,0,1)$		54	54.0	1		$1 f($ Priority < PriorityLvl, 8, 0)		2), IF (Qty>=15,MatVal(@PriceMatrix, 1,3),0)))	\$ 35.0

- New ACEIT 7.2 DEC Reports

New ACE 7.2 DEC Features

- DEC Results can be viewed in the Inputs/Results Viewer (IRV)
- New optional DEC Description field to the Add New DEC and Edit DEC attributes dialogs (Edit > Add DEC)
- New DEC Reports shows DEC column results

DEC Results can be viewed in the IRV

- Select DECs dialog
- Allows you to select which DEC columns to view in the Inputs/Results Viewer (IRV)
- Opens when you have selected to View > BY DEC Results from within the Inputs/Results Viewer and you select View > Select DECs from the menu

DEC Results can be viewed in the IRV
(cont)

	WBS/CES Description	NumberCables [+] Cables	Priority (!) Priority	$\begin{gathered} \text { Category (!] } \\ \text { Migg } \end{gathered}$	Start Date	Finish Date	Qty $(+)$ Quantity	Price (!\$) Unit Price
14	*ABC Cables Estimate							
15	Total ABC Cables Estimate	46.0					465.0	
16	Proposal Prep							
17	Design/Development							
18	Cable Design/Development				2010	2010		
19	Drawing Updates				2010	2010		
20	ST\&E				2010	2010		
21	Program Support							
22	Contractor A Dev SE/PM				2010	2010		
23	Contractor B Dev SE/PM				2010	2010		
24	Fee							
25	Production	46.0					465.0	
26	ABC Cables	46.0					465.0	
27	X01 Cable		95.0	2.0	2011	2011		\$ 3.1
28	X011 Cable		103.0	2.0	2011	2011		\$ 3.1
29	X012 Cable		104.0	2.0	2011	2011		\$ 3.1
30	X013 Cable		66.0	2.0	2011	2011		\$ 3.1
31	X02 Cable	1.0	43.0	2.0	2011	2011	9.0	\$ 3.1
32	X023 Cable		91.0	6.0	2011	2011		\$4.7
33	X023J2 Cable		118.0	2.0	2011	2011		\$ 3.1
34	X024 Cable	1.0	38.0	2.0	2011	2011	12.0	\$ 2.9

New optional DEC Description field

■ Found in the Add New DEC and Edit DEC attributes dialogs

- Edit > Add DEC
- Edit > Edit Column Properties

New POST DEC Reports

- POST > Reports > New > DEC

New POST DEC Reports (cont)

- POST DEC Report shows DEC column results

DEC Report for Point Estimate in Final Cable Estimate with DECs Matrix and SumIF.aceit
Costs in BY2009 \$K, 500 iterations
Thursday, 10 December 2009, 10:01 am

Rows	Filter	Case	DECs

DEC Results for Point Estimate

Summary

- Exploring and learning the capabilities and features of ACEIT, such as DECs, will lead to the discovery of untapped power of ACEIT.
- DEC Uses Explored:
- Use to store and/or calculate data (quantity; price; priority; number of cables) to use in other equations, including UDFs
- Use with matrix type structures (MatDecVal; MatVal)
- Use as an index in functions (SumIF)
- Data stored in DECs should be static
- DECs reduce the number of input variables, eliminate repetitious work, simplifies equations, increase efficiency, and decreases error
■ View DEC Results in Methodology Report, ACEIT 7.2 POST DEC Report, and ACEIT 7.2 IRV

DEC Uses - Start Date and

Finish Date

- Start Date and Finish Date columns behave much like a DEC -reported as a DEC -- but you cannot rename or delete the column.
- Equations on the same row may access the Start Date and Finish Date results using the following IDs: aStartDate and aFinishDate.
- Equations on other rows may access the Start Date and Finish Date results using dot notation to include the unique ID of the row being referenced followed by the ". " and the DEC name aStartDate and aFinishDate (e.g. UniqueID.aStartDate).
> This is useful because you can have schedule-like equations that link time phasing from one row to another. (UniqueID.afinishdate+30)

Using DECs with Matrix Type Structures (As Lookup Functions)

- Matrix DEC Value function allows you to easily retrieve data from a DEC column
- Similar to the MatVal function except that it requires a DEC ID instead of a year index to access the result.

MatDecVal (@Matrix, Index, @DECId)
@Matrix
This argument is the row address of a table of values used in ACE like a matrix. The elements of the matrix are always indented one level more than the row with the unique ID.
Index
This argument is the number of rows down the matrix to access. It should be a number between 1 and the last row in the matrix.
@DECId
This argument refers to the DEC column where the value is located for row Index. The "@" tells ACE to pass in a column address.

4
 Using DECs as Lookup Functions Example

- Aircraft Equipment weights are stored in a DEC
- Average Cost/Pound is a variable

- The Equipment Cost can be calculated easily using the DEC

WBS/CES Description	Unique ID	ACWt (+) Aircraft 1 Equipment Weights	Approp	Phasing Method	Equation / Throughput	Same Equation goes
Aircraft Equipment Data	ACEqp					
AIRFRAME	AF	1000	3010	C	ACCPS*ACWt	
PROPULSION		25^{*} AF.ACWt	3010	c	ACCPS*ACWt	
COMM/IDENT		.10 * AF.ACWt	3010	C	ACCPS*ACWt	
NAVIGATION/GUIDANCE		300	3010	C	ACCPS*ACWt	
CENTRAL COMPUTER		50	3010	C	ACCPS*ACWt	
FIRE CNTL SYSTEM		450	3010	C	ACCPS*ACWt	
DATA DISPL \& CNTLS		50	3010	c	ACCPS*ACWt	
RECONN EQUIP		750	3010	C	ACCPS*ACWt	
AUTO FLT CONTROLS		20 * AF.ACWt	3010	C	ACCPS*ACWt	

- Use Function MatDECVal to retrieve weight data and multiply it by the average cost/pound on a different row

WBS/CES Description	IVAL (+) Counter	ACWt (+) Aircraft 1 Equipment Weights	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
* DEC Example							
Aircraft Navigation Weight (using Standard Unique ID)					300.000 *	C	NavEqp.ACWt
Aircraft Navigation Weight (using MatDecVal)	4				300.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt)
Aircraft Equipment Weights					157,500.000 *		
AIRFRAME	1		3010		50,000.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
PROPULSION	2		3010		12,500.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
COMM/IDENT	3		3010		5,000.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
NAVIGATION/GUIDANCE	4		3010		15,000.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
CENTRAL COMPUTER	5		3010		2,500.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt * ACCP\$
FIRE CNTL SYSTEM	6		3010		22,500.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
DATA DISPL \& CNTLS	7		3010		2,500.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
RECONN EQUIP	8		3010		37,500.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt * ACCP\$
AUTO FLT CONTROLS	9		3010		10,000.000 *	C	MatDecVal(@ACEqp, IVAL, @ACWt) * ACCP\$
Aircraft Average Cost/Pound			3010	ACCP\$	\$ 50.000 *		50
Aircraft Equipment Data				ACEqp	\$ 157,500.000 *		
AIRFRAME		1000	3010	AF	\$ $50,000.000$ *	C	ACCPS*ACWt
PROPULSION		25^{*} AF.ACWt	3010		\$ 12,500.000 *	C	ACCP\$*ACWt
COMM/IDENT		10* AF.ACWt	3010		\$ 5,000.000 *	C	ACCP\$*ACWt
NAVIGATION/GUIDANCE		300	3010	NavEqp	\$ 15,000.000 *	C	ACCP\$*ACWt
CENTRAL COMPUTER		50	3010		\$ $2,500.000$ *	C	ACCP\$*ACWt
FIRE CNTL SYSTEM		450	3010		\$ $22,500.000$ *	C	ACCPS*ACWt
DATA DISPL \& CNTLS		50	3010		\$ $2,500.000$ *	C	ACCP\$*ACWt
RECONN EQUIP		750	3010		\$ 37,500.000 *	C	ACCP\$*ACWt
AUTO FLT CONTROLS		20* AF.ACWt	3010		\$ 10,000.000 *	C	ACCPS*ACWt

