Analysis, Modeling, Simulation and Experimentation

Experimentation Estimating Toolkit

Karen Mourikas - AMSE Experimentation Denise Nelson - Phantom Works Affordability The Boeing Company

January 2008

Agenda

- Overview of Experimentation
- Experimentation Estimating Approach
- Implementation of ACEIT Model
- Lessons Learned
- Next Steps
- Summary

Analysis, Modeling, Simulation and Experimentation

Overview of Experimentation

Experimentation Defined - Part I

- Definition of Experiment *

- A test under controlled conditions that is made to
- demonstrate a known truth,
- examine the validity of a hypothesis, or
- determine the efficacy of something previously untried.
- Definition of Experimentation *
- The process of conducting such a test.
- Experimentation in general
- Consists of gathering and examining data
- Explores and Answers Questions with Analyses and Observations

Types of Experimentation

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Three Main Types of Experiments

- Discovery (to understand effects of innovation)
- Effective Collaboration
- German Battlespace
- Hypotheses Testing (if A then B under conditions C)
- Target Identification \& Tracking
- Information Sharing
- Technical Demonstrations (to showcase technology, concept, etc)
- Other Types of Experiments
- Wargames \& Exercises
- Seminars / Symposiums / Workshops

Discovery Experiments

Effective Collaboration

- Discovery Experiment analyzing the question "What makes for effective collaboration?"
- "how do differences in group structure, communications patterns, work processes, participant intelligence, participant cooperative experiences, and participant expertise affect the quality of collaboration?" *
* Code of Best Practice for Experimentation, Alberts, Hayes, et al., 2002

Historical Discovery Experiments

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Information / Communications CONOPS

- "Perhaps the most famous initial discovery experiments were those conducted by the Germans to explore the tactical use of short range radios before World War II. They mimicked a battlespace (using Volkswagens as tanks) in order to learn about the reliability of the radios and the best way to employ the new communications capabilities and information exchanges among the components of their force."

Hypothesis Testing

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Objective: Investigate camera-only capabilities for identification and tracking

- Does tracking software XX provide sufficient target recognition and cueing to be used without radars?
- Compare camera with tracking software versus camera without tracking software
- If tracking software used (A)
-then increased Target Recognition (B)
- without radars (C)

Proposition: "information sharing will improve group situation awareness in combat"

- IF information sharing occurs,
- THEN group situation awareness will increase
-WHEN the subjects are military professionals working in a warfighting context.

Experimentation Defined - Part II

-Experimentation

- Contains Variability
- Demo ~ Broadway Play
- Scripted event where outcome is always the same
- Experimentation ~ Baseball Game
- Outcome is never exactly the same
- Current tactics are adapted for future games in light of observed outcomes

- Campaigns of Experimentation

- Campaigns of Analyses or Experiments needed to build body of knowledge
- Iterative Approach based on outcomes of previous experiments and analyses

Campaigns of Experiments

Command and Control for Stabilization Operations

- Such as ensure security, provide reconstruction and humanitarian assistance, act as peacekeepers and engage in military operations
- Series of experiments evaluating competing and alternative approaches
- Explore alternatives identifying strengths, weaknesses, limiting conditions and reduce potential approaches to most promising
- Analyze final candidates under more realistic environments and identify best-value approach
- Develop demonstration of best-value approach for specific operational environments
- Purpose of campaign is to convince user community selected approach is the better candidate and to provide venue for user community to critique and improve approach

Campaigns of Experimentation, Alberts, Hayes, et al., 2006

Analysis, Modeling, Simulation and Experimentation

Experimentation Estimating Approach

Why are we doing this?

- Each experiment is unique

- Different objectives, tasks, scope, domains, maturity, models, operators, personnel, etc
- Standard method of estimating needed
- Define Experimentation cost drivers to be as minimally subjective as possible
- System complexity-
-defines number of various interactions between the systems and/or subsystems (or Platforms, SoSs etc)
-Experimentation Type: Constructive/Virtual/Live
- Leverage from previous efforts: re-design and new-design of work products
- Properly capture data from future efforts to better refine estimating relationships

General Approach

- Development Approach

- Establish generic WBS for Experimentation efforts
- Develop Interview Process and Collect Data
- Perform Statistical Analysis on Normalized data
- Generate Cost Estimating Relationships (CERs)
- Design and Implement estimating Model
- Next Phase: Collect and analyze future data points
- Record labor data to distinguish time spent on each project/event
- Collect information immediately at end of scheduled effort/phase
- Update/calibrate model with new data points throughout the year
- Train Project Leaders/Estimators on the estimating tools as a standard to validate (and generate) future estimates

Establish Generic WBS

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Six general phases of Experimentation*
- Discovery (Customer Interaction)
- Understand customer needs and issues
- Problem Formulation
- Identify and Scope problem
- Experiment Design
- Decompose problem
- Experiment Development
- Build, Implement, Test \& Verify
- Experiment Execution
- Conduct the Experiment
- Analysis

- Analyze data and interpret results
* From Guide for Understanding and Implementing Defense Experimentation GUIDEx, 2006

Representative Tasks in Each Phase

- Discovery (Customer Interaction)
- Understanding the needs of the customer and capability gaps
- Problem Formulation (Preliminary)
- Preliminary identification of problem
- High level Plan of Action
- Design (Refinement)
- Detailed design and planning of the experiment
- Refined Experimentation Objective / Propositions / CONOPS
- M\&S Requirements (tools, scenarios)
- Data, MOEs/MOPs, Analysis Planning
- Architecture Products
- Detailed Plans : Experimentation, Analysis, Communication and Training

Representative Tasks in Each Phase

- Development (Implementation)
- Development \& Integration of Mod\&Sim Scenarios, Tools
- Analysis of Metrics to ensure Experiment Questions are answerable
- Training of Operators, Observers, \& other Participants
- Execution (Conduct)
- Conduct of the Experiment
- Data Collection
- Analysis (Assessment)
- Pre-Experiment Analysis Planning
- Metrics, Data Generation, Transmission, Reduction, Collection, Analysis
- Post-Experiment Reduction and analysis of the experiment data
- Interpretation and documentation of results

Data Collection \& Interview Process

- First Attempt

- Asked "How much did it cost?"
- Total and by phase, with schedule data
- Provided detailed tasks for assistance
- Result
- Too much variability in scope and type of effort
- No consistency in data or data format

- Second Attempt

- Developed Interview Questionnaire to scope effort
- Start/Stop work for given interval of work
- Clearly defined questions and examples to guide the interviewee
- Result
- Consistent data format
- Better defined scope and definitions
- 22 completed Data Points plus 11 In-work efforts

Questionnaire Ground Rules

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Data Point Defined Scope

- Schedule Start/Stop to distinguish "follow-on work" start times
- Actuals/Budget of identified time interval
- Actuals/Budgets/Tools/Personnel questions only refer to the primary work group under the supervision and control of the project lead (unless otherwise noted)
- Data not captured
- Standard/indirect cost that would be spent regardless of the effort in question
- Software licenses/maintenance
- Hardware and facility upgrades
- Training

Questionnaire Focus

- Experiment/System Complexity
- Number of interacting Classes/
- Constructive, Virtual, Live
- Tools/Models/Simulations
- Existing, Integrate As-is
- Existing Modified
- Newly Developed
- Leverage from previous work
- Number of MOEs/MOPs
- Delivered/Calculated
- Customer Involvement
- Integration
- Actuals/Budget \$K
- Actual/Scheduled Months
- Man Months (EP)
- Developers/System Engineers and Designers
- SME and PM
- Other Costs
- HW/SW tools and licensing*
- Training* and Travel
- Security Level
- Special notes of interest
*Costs above and beyond team's
expected annual expenditures

Data Analysis

- Minor trends and correlations noticed
- but no "statistical significance" calculated
- Percent breakouts for PM/SME/etc. look promising
- Possible data nuances:
- Project actuals (\$K , schedule, EP) vs. estimates
- Regression on Qualitative Data

- Subjective data
- Limited data
- Cost driver assumptions
- Refinement of questions for future data collection is required

Analysis, Modeling, Simulation and Experimentation

Implementation of ACEIT Model

Model Design and Development

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Evaluated various tools

- Excel Based Customized Tools
- Need to be developed
- DesignSheet Tool
- Not user friendly
- Needs to be developed

- ACEIT Selected

- Versatility to add/reconfigure body of model
- Post Reports
- Automated reports
- Drill down Capability in Reports
- Excel to ACEIT Capability
- Input and extracting data in model
- Possible GUI interface
- Risk Capabilities
- Inflation/Learning

Model Inputs

- Experiment Complexity
- System Complexity (Approximate number of different types of interactions)
- Experiment Type (Constructive Virtual Live)
- Phase/Concept Maturity
- Design Complexity
- Reuse/Redesign/Leverage from previous work
- Integration Complexity
- Number of different tools used
- Number of sites
- Security
- Other Drivers TBD

Experiment Complexity - Determines Analog Data

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

| Experiment Complexity
 Concept/
 Product
 Maturity |
| :--- | :--- | :--- |

User Inputs (in Red)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

	WBSICES Description	Unique ID	Equation / Throughput
16	*User Inputs		
17	Experiment Complexity Input	ECRef	F3
18		-	
19	*Design Complexity Data Reference		
20	New ESLOC from Complexity	DC1	5
21	New Modules/Algorith Map	DC2	4
22	Added Complexity/Entities	DC3	7
23	Briefings/schedule and other PM products	DC4	2
24	Customer Involvement/History	DC5	
25			
26			
27	*Integration Complexity Inputs		
28	Number of different tools used Tool Suite by host team	IC1	5
29	Number of different tools used Tool Suite by other teams	IC2	3
30	Number of sites for Development	IC3	2
31	Number of sites for Main Event	IC4	4
32	Security Level (rate 1-7)	1 C 5	1
33			

ACE Data Reference

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Looks up Average Expected Cost based on data that fits the given Complexity Rating

	WBS/CES Description		Unique ID	Equation / Throughput	Data Re
16	*User Inputs				V
17	Experiment Complexity Input		ECRef	F3	
18	Design Complexity Inputs (rate 1-7)				
19					
20	New ESLOC		DC1		
21 22	341			Equation/	
23		WBSICES Description		hroughput	Point Estimate
24		F3 ROM		3\$KperMo*F	$55,600.000$ *
26	345				
28	346				
2.	347	F3 Average Cost Per Month	F3\$KperMo	11120	11,120.000*
31	348	F3 Average Months	F3M0	5	5.000 *
32	349				

User Inputs (in Red)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

	WBSICES Description	Unique ID	Equation / Throughput
16	*User Inputs		
17	Experiment Complexity Input	ECRef	F3
18			
19	*Design Complexity Inputs (rate 1-7)		
20	New ESLOC	DC1	5
21	New Modules/AIgorithms	DC2	4
22	Added Complexity/Entities	DC3	7
23	Briefings/schedule	DC	2
24	Customer Invy Based off look up	- DC5	1
25	Descriptors, user enters		
26	level of complexity for		
27	*Integration		
28	Number of differ various drivers lost te	IC1	5
29	Number of different toorsodre by other teams	2	3
30	Number of sites for Development		2
31	Number of sites for Main Event	IC4	4
32	Security Level (rate 1-7)	IC5	1
33			

Design Complexity Look-up Values

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Design Complexity Factor

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

	WBS/CES Description	Unique ID	Equation/ Throughput
$\mathbf{1 6}$	*User Inputs		
17	Experiment Complexity Input	ECRef	F3
18			
19	*Design Complexity Inputs (rate 1-7)	DC1	
20	New ESLOC	DC2	5
21	New ModulesIAIgorithms	DC3	4
22	Added Complexity/Entities	DC4	7
23	Briefings/schedule and other PM products	DC5	2
24	Customer Involvement/History		1

		Design Complexity Factors						
Cost Driver Weights	DCX=	1	2	3	4	5	6	7
0.5	New ESLOC	0.1	0.25	0.5	08	1)	1.3	1.5
0.3	New Modules/Algorithms	0.3	0.2	0.35	0.5	1	1.1	1.2
0.1	Added Complexity/Entities	0.1	0.25	0.5	0.8	0.9	1	1.1
0.05	Briefings/schedule and other PM products	0.1	0.25	0.5	0.75	1	1.5	2
0.05	Customer Involvement/History	0.25	0.5	0.75	1)	11	1.25	1.5

$$
\begin{gathered}
\text { Design Complexity Rating }= \\
(.5 * 1+.3 * .5+.1 * 1.1+.05 * .25+.05 * 1)
\end{gathered}=.82
$$

Design Complexity Look-up Function

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Model Outputs

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Cost

- EP hours
- Developers/SE
- PM
- SME
- SW/HW, Training and Travel
- \% cost for CVL
- Expected Schedule (months)
- Schedule Scrunched/Expanded costs
- Risk Assessment
- Experiment Event Metrics
- EP to run experiment (body count)
- Days
- GUI interfaces

Q BTEENE

Analysis, Modeling, Simulation and Experimentation

Lessons Learned

Lessons Learned

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Different Languages
- COBP-X/GuideX/Boeing
- Tool/Model/Simulation
- Processes
- Phases
- Different Opinions
- Naysayers
- Enthusiasts

Q BTEEINE

Analysis, Modeling, Simulation and Experimentation

Next Steps

Next Steps

- Refine time charging to better capture future efforts
- Resonate the modeling inputs and techniques to project leaders and estimators
- Use model to plan projects initially
- Collect data at end of projects
- Refine/verify collected data and assumptions
- Continue to collect data
- Calibrate/refine Model with new data
- Mature and refine model in conjunction with SMEs to better represent and define cost drivers and level of detail

Analysis, Modeling, Simulation and Experimentation

Summary

Summary

- Experimentation
- Helps to assess concepts and technologies, causes and effects, and/or conclusions
- Explores and Answers Questions with Analyses and Observations
- Is not a scripted Demo
- Developed standard method of cost estimation
- Each experiment unique
- Experimentation WBS separated into six phases
- Data Collection and Comprehension the biggest task
- Implemented Model in ACEIT
- Biggest Lesson Learned : Need for common language
- Next Steps : Refine and Mature Model and Data Collection/Analysis

